Keywords: Relaxometry, Liver, T2*, liver iron content
MRI T2* relaxometry is a reliable method for assessing liver iron overload. To develop a fully automatic T2* relaxometry data processing method for assessing liver iron overload, we promoted a semi-automatic parenchyma extraction to an automatic approach by introducing a modified TransUNet on R2* map for the segmentation of whole liver. The proposed method showed excellent liver segmentation performance on the internal and external test sets and yielded T2* measurements highly consistent with those by the semi-automatic method. This fully automatic approach will enable an efficient and reliable measurement of liver T2* for assessing hepatic iron content in clinical practice.1. Alústiza J M, Castiella A, De Juan M D, et al. Iron overload in the liver diagnostic and quantification[J]. Eur J Radiol, 2007, 61(3): 499-506.
2. Angelucci E, Brittenham G M, Mclaren C E, et al. Hepatic iron concentration and total body iron stores in thalassemia major[J]. N Engl J Med, 2000, 343(5): 327-31.
3. Labranche R, Gilbert G, Cerny M, et al. Liver Iron Quantification with MR Imaging: A Primer for Radiologists[J]. Radiographics, 2018, 38(2): 392-412.
4. Zheng Q, Feng Y, Wei X, et al. Automated interventricular septum segmentation for black-blood myocardial T2* measurement in thalassemia[J]. J Magn Reson Imaging, 2015, 41(5): 1242-50.
5. St Pierre T G, Clark P R, Chua-Anusorn W. Single spin-echo proton transverse relaxometry of iron-loaded liver[J]. NMR Biomed, 2004, 17(7): 446-58.
6. Anderson L J, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload[J]. Eur Heart J, 2001, 22(23): 2171-9.
7. Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI[J]. Lancet, 2004, 363(9406): 357-362.
8. Wood J C, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients[J]. Blood, 2005, 106(4): 1460-5.
9. Hankins J S, Mccarville M B, Loeffler R B, et al. R2* magnetic resonance imaging of the liver in patients with iron overload[J]. Blood, 2009, 113(20): 4853-5.
10. St Pierre T G, Clark P R, Chua-Anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance[J]. Blood, 2005, 105(2): 855-61.
11. Runge J H, Akkerman E M, Troelstra M A, et al. Comparison of clinical MRI liver iron content measurements using signal intensity ratios, R (2) and R (2)[J]. Abdom Radiol (NY), 2016, 41(11): 2123-2131.
12. Kirk P, He T, Anderson L J, et al. International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers[J]. J Magn Reson Imaging, 2010, 32(2): 315-9.
13. Marro K, Otto R, Kolokythas O, et al. A simulation-based comparison of two methods for determining relaxation rates from relaxometry images[J]. Magnetic Resonance Imaging, 2011, 29(4): 497-506.
14. Positano V, Salani B, Pepe A, et al. Improved. T2*assessment in liver iron overload by magnetic resonance imaging[J]. Magnetic Resonance Imaging, 2009, 27(2): 188-197.
15. Mccarville M B, Hillenbrand C M, Loeffler R B, et al. Comparison of whole liver and small region-of-interest measurements of MRI liver R2*in children with iron overload[J]. Pediatric Radiology, 2010, 40(8): 1360-1367.
16. Deng J, Rigsby C K, Schoeneman S, et al. A semiautomatic postprocessing of liver R2* measurement for assessment of liver iron overload[J]. Magn Reson Imaging, 2012, 30(6): 799-806.
17. Liu M, Vanguri R, Mutasa S, et al. Channel width optimized neural networks for liver and vessel segmentation in liver iron quantification[J]. Computers in Biology and Medicine, 2020, 122: 7.
18. Positano V, Meloni A, Santarelli M F, et al. Deep Learning Staging of Liver Iron Content From Multiecho MR Images[J]. J Magn Reson Imaging, 2022.
19. Feng Y, Feng M, Gao H, et al. A novel semiautomatic parenchyma extraction method for improved MRI R2* relaxometry of iron loaded liver[J]. J Magn Reson Imaging, 2014, 40(1): 67-78.
20. Wang C, Zhang X, Liu X, et al. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization[J]. Magn Reson Med, 2018, 80(2): 792-801.
21. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015: 234-241.
22. Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[J]. CoRR, 2021, abs/2102.04306.
23. Zhang H, Wu C, Zhang Z, et al. ResNeSt: Split-Attention Networks[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022: 2735-2745.
24. Storey P, Thompson A A, Carqueville C L, et al. R2* imaging of transfusional iron burden at 3T and comparison with 1.5T[J]. J Magn Reson Imaging, 2007, 25(3): 540-7.