Keywords: Quantitative Imaging, Quantitative Imaging, Image Reconstruction
We introduce a new method for joint T1 and T2* MR parameter mapping in MAPLE framework which takes advantage of multi-echo multi-flip angle (MEMFA) gradient echo data. It combines joint reconstruction of MEMFA data with a joint relaxation signal model to improve parameter estimation. The proposed method estimates T1 and T2* parameters jointly with enough flexibility to incorporate different standard and state-of-the-art reconstruction methods, including zero-shot self-supervised learning (ZS-SSL) reconstruction. It improves the reconstruction performance of the methods with learnable parameters by offering a physics-based additional regularization into their optimization process and exploiting spatio-temporal correlations.[1] L. Feng, D. Ma, and F. Liu, “Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends,” NMR Biomed., vol. 35, no. 4, p. e4416, 2022.
[2] L. Wang, M. E. Schweitzer, A. Padua, and R. R. Regatte, “Rapid 3D‐T1 mapping of cartilage with variable flip angle and parallel imaging at 3.0 T,” J. Magn. Reson. Imaging An Off. J. Int. Soc. Magn. Reson. Med., vol. 27, no. 1, pp. 154–161, 2008.
[3] M. Doneva, P. Börnert, H. Eggers, C. Stehning, J. Sénégas, and A. Mertins, “Compressed sensing reconstruction for magnetic resonance parameter mapping,” Magn. Reson. Med., vol. 64, no. 4, pp. 1114–1120, 2010.
[4] C. Huang, C. G. Graff, E. W. Clarkson, A. Bilgin, and M. I. Altbach, “T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing,” Magn. Reson. Med., vol. 67, no. 5, pp. 1355–1366, 2012.
[5] J. V Velikina, A. L. Alexander, and A. Samsonov, “Accelerating MR parameter mapping using sparsity‐promoting regularization in parametric dimension,” Magn. Reson. Med., vol. 70, no. 5, pp. 1263–1273, 2013.
[6] T. Zhang and J. M. Pauly, “Levesque IRJMrim,” Accel. Param. Mapp. with a Local. low Rank constraint, vol. 73, no. 2, pp. 655–661, 2015.
[7] B. Zhao, W. Lu, T. K. Hitchens, F. Lam, C. Ho, and Z. Liang, “Accelerated MR parameter mapping with low‐rank and sparsity constraints,” Magn. Reson. Med., vol. 74, no. 2, pp. 489–498, 2015.
[8] T. J. Sumpf, M. Uecker, S. Boretius, and J. Frahm, “Model‐based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin‐echo MRI,” J. Magn. Reson. Imaging, vol. 34, no. 2, pp. 420–428, 2011.
[9] T. J. Sumpf, A. Petrovic, M. Uecker, F. Knoll, and J. Frahm, “Fast T2 mapping with improved accuracy using undersampled spin-echo MRI and model-based reconstructions with a generating function,” IEEE Trans. Med. Imaging, vol. 33, no. 12, pp. 2213–2222, 2014.
[10] B. Zhao, F. Lam, and Z.-P. Liang, “Model-based MR parameter mapping with sparsity constraints: parameter estimation and performance bounds,” IEEE Trans. Med. Imaging, vol. 33, no. 9, pp. 1832–1844, 2014.
[11] V. Roeloffs, X. Wang, T. J. Sumpf, M. Untenberger, D. Voit, and J. Frahm, “Model‐based reconstruction for T1 mapping using single‐shot inversion‐recovery radial FLASH,” Int. J. Imaging Syst. Technol., vol. 26, no. 4, pp. 254–263, 2016.
[12] X. Wang et al., “Model‐based T 1 mapping with sparsity constraints using single‐shot inversion‐recovery radial FLASH,” Magn. Reson. Med., vol. 79, no. 2, pp. 730–740, 2018.
[13] T. Hilbert et al., “Accelerated T2 mapping combining parallel MRI and model‐based reconstruction: GRAPPATINI,” J. Magn. Reson. Imaging, vol. 48, no. 2, pp. 359–368, 2018.
[14] O. Maier et al., “Rapid T1 quantification from high resolution 3D data with model‐based reconstruction,” Magn. Reson. Med., vol. 81, no. 3, pp. 2072–2089, 2019.
[15] O. Cohen, B. Zhu, and M. S. Rosen, “MR fingerprinting deep reconstruction network (DRONE),” Magn. Reson. Med., vol. 80, no. 3, pp. 885–894, 2018.
[16] F. Liu, L. Feng, and R. Kijowski, “MANTIS: Model‐Augmented Neural neTwork with Incoherent k‐space Sampling for efficient MR parameter mapping,” Magn. Reson. Med., vol. 82, no. 1, pp. 174–188, 2019.
[17] F. Liu, R. Kijowski, G. El Fakhri, and L. Feng, “Magnetic resonance parameter mapping using model‐guided self‐supervised deep learning,” Magn. Reson. Med., vol. 85, no. 6, pp. 3211–3226, 2021.
[18] Y. Jun, H. Shin, T. Eo, T. Kim, and D. Hwang, “Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method,” Med. Image Anal., vol. 70, p. 102017, 2021.
[19] T. H. Kim, J. Cho, B. Zhao, B. Bilgic. Accelerated MR Parameter Mapping With Scan-Specific Unsupervised Networks. International Society for Magnetic Resonance in Medicine Annual Meeting (ISMRM), London, 2022, p. 4402.
[20] B. Yaman, S. A. H. Hosseini, and M. Akçakaya, “Zero-shot self-supervised learning for MRI reconstruction,” arXiv Prepr. arXiv2102.07737, 2021.
[21] Pruessmann, K. P., Weiger, M., Scheidegger, M. B. & Boesiger, P. SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. An Off. J. Int. Soc. Magn. Reson. Med. 42, 952–962 (1999).
[22] Chen, C., Li, Y. & Huang, J. Calibrationless parallel MRI with joint total variation regularization. in International Conference on Medical Image Computing and Computer-Assisted Intervention 106–114 (Springer, 2013).
[23] Kim, T. H., Garg, P. & Haldar, J. P. LORAKI: Autocalibrated recurrent neural networks for autoregressive MRI reconstruction in k-space. arXiv Prepr. arXiv1904.09390 (2019).