Keywords: Machine Learning/Artificial Intelligence, Machine Learning/Artificial Intelligence
The accurate prediction of preterm birth is a clinically crucial but challenging problem due to its complex aetiology. In this work, data from fetal anatomical and functional multi-organ MRI acquisitions are used to train Random Forests and Support Vector Machines to predict gestational age at delivery. These predictions are classified as 'term' or 'preterm'. The model with highest sensitivity, a Random Forest, achieved 0.85 sensitivity, 0.81 accuracy, 0.8 specificity, 1.99 weeks Mean Absolute Error, and 0.58 R2 score. This work proves the potential of Machine Learning models trained on anatomical and functional MRI data to predict gestational age at delivery.1. World Health Organization. Preterm birth. Feb. 2018. url: https://www.who.int/news-room/fact-sheets/detail/preterm-birth.
2. Salimah Walani. “Global burden of preterm birth”. In: International Journal of Gynecology Obstetrics 150 (July 2020), pp. 31–33. doi: 10.1002/ijgo.13195.
3. Jamie Perin et al. “Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the Sustainable Development Goals”. In: The Lancet Child Adolescent Health 6 (Nov. 2021). doi: 10.1016/S2352-4642(21)00311-4.
4. Hannah Blencowe et al. “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications”. In: Lancet 379 (June 2012), pp. 2162–72. doi: 10.1016/S0140-6736(12)60820-4.
5. Saifon Chawanpaiboon et al. “Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis”. In: The Lancet Global Health 7.1 (2019), e37–e46. issn: 2214-109X. doi: https://doi.org/10.1016/S2214-109X(18)
30451-0. url: https://www.sciencedirect.com/science/article/pii/S2214109X18304510.
6. Jeanie LY Cheong et al. “Have outcomes following extremely preterm birth improved over time?” In: Seminars in Fetal and Neonatal Medicine. Vol. 25. 3. Elsevier. 2020, p. 101114.
7. Rosemarie Boland, Jeanie Cheong, and Lex Doyle. “Changes in long-term survival and neurodevelopmental disability in infants born extremely preterm in the post-surfactant era”. In: Seminars in Perinatology 45 (Aug. 2021), p. 151479. doi: 10.1016/j.semperi.2021.151479.
8. Marilee Allen, Elizabeth Cristofalo, and Christina Kim. “Outcomes of Preterm Infants: Morbidity Replaces Mortality”. In: Clinics in perinatology 38 (Sept. 2011), pp. 441–54. doi: 10.1016/j.clp.2011.06.011.
9. Heather Frey and Mark Klebanoff. “The epidemiology, etiology, and costs of preterm birth”. In: Seminars in Fetal and Neonatal Medicine 21 (Jan. 2016). doi: 10.1016/j.siny.2015.12.011.
10. Natalie Suff, Lisa Story, and Andrew Shennan. “The prediction of preterm delivery: What is new?” In: Seminars in Fetal and Neonatal Medicine 24 (Sept. 2018). doi: 10.1016/j.siny.2018.09.006.
11. Lisa Story et al. “The use of antenatal fetal Magnetic Resonance Imaging in the assessment of patients at high risk of preterm birth”. In: European Journal of Obstetrics Gynecology and Reproductive Biology 222 (Jan. 2018). doi: 10.1016/j.ejogrb.2018.01.014.
12. Lisa Story et al. “Foetal lung volumes in pregnant women who deliver very preterm: a pilot study”. In: Pediatric Research 87 (Dec. 2019). doi: 10.1038/s41390-019-0717-9.
13. Danielle Abbott et al. “Quantitative Fetal Fibronectin to Predict Preterm Birth in Asymptomatic Women at High Risk”. In: Obstetrics and gynecology 125 (May 2015), pp. 1168–1176. doi: 10.1097/AOG.0000000000000754.
14. S. Radford et al. “Quantitative fetal fibronectin for the prediction of preterm birth in symptomatic women”. In: Archives of Disease in Childhood - Fetal and Neonatal Edition 97 (Apr. 2012), A73–A73. doi: 10.1136/fetalneonatal-2012-301809.240.
15. Jana Hutter et al. “Multi-modal functional MRI to explore placental function over gestation”. In: Magnetic Resonance in Medicine 81.2 (2019), pp. 1191–1204. doi: https ://doi.org/10.1002/mrm.27447. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.27447. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27447.
16. R.D. Cook and S. Weisberg. Residuals and Influence in Regression. Monographs on statistics and applied probability. Chapman and Hall, 1986. url: https://books.google.co.uk/books?id=aMDpswEACAAJ.
17. Melissa Azur et al. “Multiple Imputation by Chained Equations: What is it and how does it work?” In: International journal of methods in psychiatric research 20 (Mar. 2011), pp. 40–9. doi: 10.1002/mpr.329.
18. Dimitris Bertsimas, Colin Pawlowski, and Ying Zhuo. “From predictive methods to missing data imputation: An optimization approach”. In: Journal of Machine Learning Research 18 (Apr. 2018), pp. 1–39.
19. Robert Goldenberg et al. “Epidemiology and Causes of Preterm Birth”. In: Lancet 371 (Feb. 2008), pp. 75–84. doi: 10.1016/S0140-6736(08)60074-4.
20. G. Casella, R.L. Berger, and Brooks/Cole Publishing Company. Statistical Inference. Duxbury advanced series in statistics and decision sciences. Thomson Learning, 2002, p. 556. isbn: 9780534243128. url: https://books.google.co.uk/books?id=0x%5C_vAAAAMAAJ.
21. Damjan Krstajic et al. “Cross-validation pitfalls when selecting and assessing regression and classification models”. In: Journal of cheminformatics 6 (Mar. 2014), p. 10. doi: 10.1186/1758-2946-6-10.
22. Stephanie Purisch and Cynthia Gyamfi. “Epidemiology of preterm birth”. In: Seminars in Perinatology 41 (Sept. 2017). doi: 10.1053/j.semperi.2017.07.009.