Keywords: Validation, Brain, Marmoset
Several studies have compared myelin-sensitive MRI maps to myelin staining to demonstrate the degree of correlation of the MRI metric with myelin content. This study in the common marmoset compares six myelin-sensitive MRI metrics acquired in vivo to stains for myelin, cell nuclei, and ferritin. T2*-based myelin water fraction (MWF) and inhomogeneous magnetization transfer saturation (ihMTsat) presented the greatest specificity for myelin content, with ihMTsat having a higher signal in grey matter regions. T1w/T2w had the strongest correlation with the iron-storage protein ferritin, and T2* presented the greatest correlation with the cell nuclei stain.
1. Stüber C, Morawski M, Schäfer A, et al. Myelin and iron concentration in the human brain: A quantitative study of MRI contrast. Neuroimage. 2014;93(P1):95-106. doi:10.1016/j.neuroimage.2014.02.026
2. Eickhoff S, Walters NB, Schleicher A, et al. High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum Brain Mapp. 2005;24(3):206-215. doi:10.1002/hbm.20082
3. Edwards LJ, Kirilina E, Mohammadi S, Weiskopf N. Microstructural imaging of human neocortex in vivo. Neuroimage. 2018;182:184-206. doi:10.1016/j.neuroimage.2018.02.055
4. Alkemade A, Pine K, Kirilina E, et al. 7 Tesla MRI Followed by Histological 3D Reconstructions in Whole-Brain Specimens. Front Neuroanat. 2020;14(October):1-11. doi:10.3389/fnana.2020.536838
5. Birkl C, Birkl-Toeglhofer AM, Endmayr V, et al. The influence of brain iron on myelin water imaging. Neuroimage. 2019;199(May):545-552. doi:10.1016/j.neuroimage.2019.05.042
6. Bagnato F, Hametner S, Franco G, et al. Selective Inversion Recovery Quantitative Magnetization Transfer Brain MRI at 7T: Clinical and Postmortem Validation in Multiple Sclerosis. J Neuroimaging. 2018;28(4):380-388. doi:10.1111/jon.12511
7. Khodanovich MY, Sorokina I V., Glazacheva VY, et al. Histological validation of fast macromolecular proton fraction mapping as a quantitative myelin imaging method in the cuprizone demyelination model. Sci Rep. 2017;7(October 2016):1-12. doi:10.1038/srep46686
8. Hametner S, Endmayr V, Deistung A, et al. The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. Neuroimage. 2018;179(February):117-133. doi:10.1016/j.neuroimage.2018.06.007
9. Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of Myelin. Elife. 2020;9:1-23. doi:10.7554/eLife.61523
10. Liu C, Ye FQ, Yen CCC, et al. A digital 3D atlas of the marmoset brain based on multi-modal MRI. Neuroimage. 2018;169(July 2017):106-116. doi:10.1016/j.neuroimage.2017.12.004
11. Liu C, Ye FQ, Newman JD, et al. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat Neurosci. 2020;23(2):271-280. doi:10.1038/s41593-019-0575-0
12. Majka P, Bednarek S, Chan JM, et al. Histology-Based Average Template of the Marmoset Cortex With Probabilistic Localization of Cytoarchitectural Areas. Neuroimage. 2021;226(April 2020):117625. doi:10.1016/j.neuroimage.2020.117625
13. Majka P, Bai S, Bakola S, et al. Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun. 2020;11(1). doi:10.1038/s41467-020-14858-0
14. Woodward A, Hashikawa T, Maeda M, et al. The Brain/MINDS 3D digital marmoset brain atlas. Sci Data. 2018;5:1-12. doi:10.1038/sdata.2018.9
15. Hori Y, Autio J, Ohno M, et al. Translating the Human Connectome Project to Marmoset Imaging : 16-Channel Multi-Array Coil and HCP-Style MRI Protocols and Preprocessing. In: Proceedings of the 27th Annual Meeting of ISMRM, Paris, France. ; 2018.
16. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26-41. doi:10.1016/j.media.2007.06.004
17. Peng T, Thorn K, Schroeder T, et al. A BaSiC tool for background and shading correction of optical microscopy images. Nat Commun. 2017;8:1-7. doi:10.1038/ncomms14836
18. Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009;25(11):1463-1465. doi:10.1093/bioinformatics/btp184
19. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. doi:10.1038/nmeth.2019
20. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11(7):36-42.
21. Majka P, Wójcik DK. Possum—A Framework for Three-Dimensional Reconstruction of Brain Images from Serial Sections. Neuroinformatics. 2016;14(3):265-278. doi:10.1007/s12021-015-9286-1
22. Yushkevich PA, Gao Y, Gerig G. ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. IEEE; 2016:3342-3345. doi:10.1109/EMBC.2016.7591443
23. Rowley CD, Leppert IR, Campbell JSW, et al. g-Ratio in the common marmoset: a comparison across different myelin-sensitive MRI metrics with b-tensor encoded diffusion. In: International Society for Magnetic Resonance in Medicine. ; 2021:0296.
24. Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage. 2016;142:394-406. doi:10.1016/j.neuroimage.2016.08.016
25. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med. 2016;76(5):1574-1581. doi:10.1002/mrm.26054
26. Song JE, Shin J, Lee H, Lee HJ, Moon WJ, Kim DH. Blind Source Separation for Myelin Water Fraction Mapping Using Multi-Echo Gradient Echo Imaging. IEEE Trans Med Imaging. 2020;39(6):2235-2245. doi:10.1109/TMI.2020.2967068
Figure 1: Imaging Parameters. Myelin-sensitive metrics were repeated three times and averaged. Myelin-sensitive metrics were denoised using MP-PCA24 and Gibb’s ringing removal25. The myelin water fraction (MWF) map was generated using rPCA approach26.
Figure 2: Five sections selected for analysis. The colour channels are separated for a single slice to illustrate the regional differences in each stain, with red, green, and blue representing ferritin, FluoroMyelin and Hoechst stains respectively. The zoomed-in tiles present the image at the acquired resolution of 0.67 μm. The bottom row presents the manually delineated ROIs, overlayed on the MTsat map. ROIs were coloured based on the tissue type they covered and did not span multiple slices.
Figure 3: RGB histology section and myelin-sensitive MRI metrics aligned in a common space. Susceptibility-induced signal dropout is present in the T2* and MWF maps. This is most apparent on the inferior and superior regions of the slice. The tiled registration image contains the FluoroMyelin stain in green, ferritin stain in red, the block-face images in pink, and the MTsat MRI image in grey scale. Good alignment between MR maps and the histological stains is observed in the tiled imaged.