Keywords: Brain Connectivity, Tractography & Fibre Modelling, Fiber Orientation Distribution
Modern structural brain connectome pipelines and tractography techniques heavily rely on the quality of the diffusion weighted image acquisition (angular resolution) and the subsequent estimation of the fiber orientation distributions (FODs) for each voxel. Generating reliable connectomes from low angular single-shell acquisitions in clinical scenarios remains a challenging task. This work presents an end-to-end deep learning framework to enhance FOD estimates according to multi-shell acquisitions from low angular single-shell acquisitions to guarantee high quality tractography and connectomes within acceptable time and resources.[1] Alexander, D.C., Zikic, D., Ghosh, A., Tanno, R., Wottschel, V., Zhang, J., Kaden, E., Dyrby, T.B., Sotiropoulos, S.N., Zhang, H., et al., 2017. Image quality transfer and applications in diffusion MRI. Neuroimage 152, 283–298.
[2] Tanno, R., Worrall, D.E., Kaden, E., Ghosh, A., Grussu, F., Bizzi, A., Sotiropoulos, S.N., Criminisi, A., Alexander, D.C., 2021. Uncertainty modeling in deep learning for safer neuroimage enhancement: demonstration in diffusion MRI. Neuroimage 225, 117366.
[3] Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J., 2014. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426.
[4] Tournier, J.D., Calamante, F., Connelly, A., 2007. Robust determination of the fiber orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35, 1459–1472.
[5] Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A., 2004. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23, 1176–1185.
[6] Dell’Acqua, F., Tournier, J.D., 2019. Modeling white matter with spherical deconvolution: how and why? NMR Biomed. 32, e3945.
[7] Farquharson, S., Tournier, J.D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., Jackson, G.D., Connelly, A., 2013. White matter fiber tractography: why we need to move beyond DTI. Journal of neurosurgery 118, 1367–1377.
[8] Zeng, R., Lv, J., Wang, H., Zhou, L., Barnett, M., Calamante, F., Wang, C., 2022. FOD-Net: A deep learning method for fiber orientation distribution angular super resolution. Medical Image Analysis 79,102431.
[9] Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al., 2013. The WU-minn human connectome project: an overview. Neuroimage 80, 62–79.
[10] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S., 2019. Free-form image inpainting with gated convolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). pp. 4471–4480.
[11] Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.H., Connelly, A., 2019. MRtrix3: a fast, flexible and open software framework for medical image processing and visualization. Neuroimage 202, 116137.
[12] Khan, W., Egorova, N., Khlif, M.S., Mito, R., Dhollander, T., Brodtmann, A., 2020. Three-tissue compositional analysis reveals in-vivo microstructural heterogeneity of white matter hyperintensities following stroke. Neuroimage 218, 116869.
[13] Breuer, K., Stommel, M., Korte, W., 2019. Analysis and evaluation of fiber orientation reconstruction methods. Journal of Composites Science 3(3), 67.
[14] Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7132–7141.
[15] Anderson, A.W., 2005. Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 54, 1194–1206.
[16] Tournier, J.D., Calamante, F., Connelly A., 2010. Improved probabilistic streamlines tractography by 2nd order integration over fiber orientation distributions. Paper presented at: Proceedings of the international society for magnetic resonance in medicine.
[17] Smith, R.E., Tournier, J.D., Calamante, F., Connelly A., 2015. SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119, 338-351.
[18] Desikan, R.S., Ségonne, F., Fischl, B., et al. 2006. An automated labeling system for subdividing thehuman cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968-980.
Figure 3a. Mean Angular Error (MAE) of ROIs of different crossing fiber structures and white matter tissue on HCP dataset. FOD-Net 2.0 outperforms other methods in all ROIs on HCP. 3b. MAE of ROIs on in-house clinical data between different clinical groups. FOD-Net 2.0 outperforms other methods in ROI1,2 and pure white matter tissue on clinical data.