Keywords: fMRI, Multimodal, Preclinical
The underlying sources of negative BOLD responses (NBRs) are still debated. We have recently shown that Positive BOLD response (PBR) to NBR transitions can be induced in the visual pathway by modulating the visual frequency of stimulation, reflecting neural activation/suppression, respectively. Here, we investigate how diffusion functional MRI (dfMRI) signals, which suffer less from vessel contamination, correspond to these activation and suppression regimes. Our results show that dfMRI signals are sharper and more sensitive to suppression induced at high visual stimulation frequencies. Furthermore, striking electrophysiology characteristics such as onsets and offset peaks are more prominent in the dfMRI signals.[1] Goense, J. B. M. & Logothetis, N. K. Neurophysiology of the BOLD fMRI Signal in Awake Monkeys. Curr. Biol. 18, 631–640 (2008);
[2] Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001);
[3] Stefanovic, B., Warnking, J. M. & Pike, G. B. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22, 771–778 (2004);
[4] Shmuel, A. et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36, 1195–1210 (2002);
[5] Sten, S. et al. Neural inhibition can explain negative BOLD responses: A mechanistic modelling and fMRI study. Neuroimage 158, 219–231 (2017);
[6] Pasley, B. N., Inglis, B. A. & Freeman, R. D. Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. Neuroimage 36, 269–276 (2007);
[7] Boorman, L. et al. Negative Blood Oxygen Level Dependence in the Rat:A Model for Investigating the Role of Suppression in Neurovascular Coupling. J. Neurosci. 30, 4285–4294 (2010);
[8] Muthukumaraswamy, S. D., Edden, R. A. E., Jones, D. K., Swettenham, J. B. & Singh, K. D. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc. Natl. Acad. Sci. U. S. A. 106, 8356–8361 (2009);
[9] Shmuel, A., Augath, M., Oeltermann, A. & Logothetis, N. K. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat. Neurosci. 9, 569–577 (2006);
[10] Boillat, Y., Xin, L., van der Zwaag, W. & Gruetter, R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J. Cereb. Blood Flow Metab. 40, 488–500 (2020);
[11] Northoff, G. et al. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat. Neurosci. 10, 1515–1517 (2007);
[12] Devor, A. et al. Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal. J. Neurosci. 27, 4452–4459 (2007);
[13] Van Camp, N., Verhoye, M., De Zeeuw, C. I. & Van der Linden, A. Light Stimulus Frequency Dependence of Activity in the Rat Visual System as Studied With High-Resolution BOLD fMRI. J. Neurophysiol. 95, 3164–3170 (2006);
[14] Pawela, C. P. et al. Modeling of region-specific fMRI BOLD neurovascular response functions in rat brain reveals residual differences that correlate with the differences in regional evoked potentials. Neuroimage 41, 525–534 (2008);
[15] Bailey, C. J. et al. Analysis of time and space invariance of BOLD responses in the rat visual system. Cereb. Cortex 23, 210–222 (2013);
[16] Niranjan, A., Christie, I. N., Solomon, S. G., Wells, J. A. & Lythgoe, M. F. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI. Neuroimage 139, 337–345 (2016);
[17] Gil, R.; F. Fernandes, F.; Shemesh, N.; Increased negative BOLD responses along the rat visual pathway with short inter-stimulus intervals [abstract]. In: 2020 ISMRM and SMRT Annual Meeting and Exhibition; 08-14 August 2020; Virtual conference;
[18] Gil, R.; Valente, M.; Renart, A., Shemesh, N.; Negative BOLD closely follows neuronal suppression in superior colliculus [abstract]. In: 2022 ISMRM and SMRT Annual Meeting and Exhibition; 07-12 May 2022;
[19] Nunes, D., Gil, R. & Shemesh, N. A rapid-onset diffusion functional MRI signal reflects neuromorphological coupling dynamics. Neuroimage 231, 117862 (2021);
[20] Le Bihan, D., Urayama, S. I., Aso, T., Hanakawa, T. & Fukuyama, H. Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc. Natl. Acad. Sci. U. S. A. 103, 8263–8268 (2006);
[21] Bai, R., Stewart, C. V., Plenz, D. & Basser, P. J. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly. Proc. Natl. Acad. Sci. 113, E1728–E1737 (2016);
[22] Kim, S.-G., Lee, S.-P., Silva, A. C. & Ugurbil, K. Diffusion-weighted spin-echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes. Magn. Reson. Med. 42, 919–928 (1999);
[23] Rudrapatna, U. S., van der Toorn, A., van Meer, M. P. A. & Dijkhuizen, R. M. Impact of hemodynamic effects on diffusion-weighted fMRI signals. Neuroimage 61, 106–114 (2012);
[24] Tsurugizawa, T., Ciobanu, L. & Le Bihan, D. Water diffusion in brain cortex closely tracks underlying neuronal activity. Proc. Natl. Acad. Sci. 110, 11636–11641 (2013);
[25] Kohno, S. et al. Water-diffusion slowdown in the human visual cortex on visual stimulation precedes vascular responses. J. Cereb. Blood Flow Metab. 29, 1197–1207 (2009);
[26] Niendorf, T. et al. Advancing cardiovascular, neurovascular, and renal magnetic resonance imaging in small rodents using cryogenic radiofrequency coil technology. Front. Pharmacol. 6, 1–21 (2015);
[27] Baltes, C., Radzwill, N., Bosshard, S., Marek, D. & Rudin, M. Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed. 22, 834–842 (2009);
[28] Paxinos, G; Franklin, K. Mouse Brain in Stereotaxic Coordinates. (2001).