Keywords: Blood vessels, Oxygenation
Asymptomatic internal carotid artery stenosis (ICAS) is linked with increased stroke risk and cognitive decline. Physiological MRI of cerebral hemodynamic changes in ICAS patients is promising to inform treatment decisions. Here, we investigated the complex pathophysiology of ICAS using principal component analysis of cerebral perfusion and oxygenation changes to establish disease-specific patterns of CBF, OEF, CMRO2 and the effective oxygen diffusivity of the capillary bed. Regression models revealed the association of pattern expression with sonography-based degree of stenosis and flow velocity in the carotid artery, as well as systemic blood pressure.1. de Weerd M, Greving JP, Hedblad B, et al. Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke 2010; 41: 1294-1297. 2010/05/01. DOI: 10.1161/STROKEAHA.110.581058.
2. Petty GW, Brown RD, Jr., Whisnant JP, et al. Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke 1999; 30: 2513-2516. 1999/12/03. DOI: 10.1161/01.str.30.12.2513.
3. Gottler J, Kaczmarz S, Nuttall R, et al. The stronger one-sided relative hypoperfusion, the more pronounced ipsilateral spatial attentional bias in patients with asymptomatic carotid stenosis. J Cereb Blood Flow Metab 2020; 40: 314-327. 2018/11/28. DOI: 10.1177/0271678X18815790.
4. Mathiesen EB, Waterloo K, Joakimsen O, et al. Reduced neuropsychological test performance in asymptomatic carotid stenosis: The Tromsø Study. Neurology 2004; 62: 695-701. 2004/03/10. DOI: 10.1212/01.wnl.0000113759.80877.1f.
5. Marshall RS, Lazar RM, Liebeskind DS, et al. Carotid revascularization and medical management for asymptomatic carotid stenosis - Hemodynamics (CREST-H): Study design and rationale. Int J Stroke 2018; 13: 985-991. 2018/08/23. DOI: 10.1177/1747493018790088.
6. Schmitzer L, Sollmann N, Kufer J, et al. Decreasing Spatial Variability of Individual Watershed Areas by Revascularization Therapy in Patients With High-Grade Carotid Artery Stenosis. J Magn Reson Imaging 2021; 54: 1878-1889. 2021/06/20. DOI: 10.1002/jmri.27788.
7. Hino A, Tenjin H, Horikawa Y, et al. Hemodynamic and metabolic changes after carotid endarterectomy in patients with high-degree carotid artery stenosis. J Stroke Cerebrovasc Dis 2005; 14: 234-238. 2007/10/02. DOI: 10.1016/j.jstrokecerebrovasdis.2005.08.001.
8. Schroder J, Heinze M, Gunther M, et al. Dynamics of brain perfusion and cognitive performance in revascularization of carotid artery stenosis. Neuroimage Clin 2019; 22: 101779. 2019/03/25. DOI: 10.1016/j.nicl.2019.101779.
9. Soinne L, Helenius J, Tatlisumak T, et al. Cerebral hemodynamics in asymptomatic and symptomatic patients with high-grade carotid stenosis undergoing carotid endarterectomy. Stroke 2003; 34: 1655-1661. 2003/06/14. DOI: 10.1161/01.STR.0000075605.36068.D9.
10. Gottler J, Kaczmarz S, Kallmayer M, et al. Flow-metabolism uncoupling in patients with asymptomatic unilateral carotid artery stenosis assessed by multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab 2019; 39: 2132-2143. 2018/07/04. DOI: 10.1177/0271678X18783369.
11. Kaczmarz S, Gottler J, Petr J, et al. Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. J Cereb Blood Flow Metab 2021; 41: 380-396. 2020/04/03. DOI: 10.1177/0271678X20912364.
12. Kaczmarz S, Griese V, Preibisch C, et al. Increased variability of watershed areas in patients with high-grade carotid stenosis. Neuroradiology 2018; 60: 311-323. 2018/01/05. DOI: 10.1007/s00234-017-1970-4.
13. Bouvier J, Detante O, Tahon F, et al. Reduced CMRO(2) and cerebrovascular reserve in patients with severe intracranial arterial stenosis: a combined multiparametric qBOLD oxygenation and BOLD fMRI study. Hum Brain Mapp 2015; 36: 695-706. 2014/10/14. DOI: 10.1002/hbm.22657.
14. Zarrinkoob L, Wahlin A, Ambarki K, et al. Blood Flow Lateralization and Collateral Compensatory Mechanisms in Patients With Carotid Artery Stenosis. Stroke 2019; 50: 1081-1088. 2019/04/05. DOI: 10.1161/STROKEAHA.119.024757.
15. Hyder F, Shulman RG and Rothman DL. A model for the regulation of cerebral oxygen delivery. J Appl Physiol (1985) 1998; 85: 554-564. DOI: 10.1152/jappl.1998.85.2.554.
16. Kufer J, Preibisch C, Epp S, et al. Imaging effective oxygen diffusivity in the human brain with multiparametric magnetic resonance imaging. Journal of Cerebral Blood Flow & Metabolism. Epub ahead of print 0271678x2110484. DOI: 10.1177/0271678x211048412.
17. Zhang N, Gordon ML, Ma Y, et al. The Age-Related Perfusion Pattern Measured With Arterial Spin Labeling MRI in Healthy Subjects. Front Aging Neurosci 2018; 10: 214. 2018/08/02. DOI: 10.3389/fnagi.2018.00214.
18. Asllani I, Habeck C, Scarmeas N, et al. Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer's disease. J Cereb Blood Flow Metab 2008; 28: 725-736. 2007/10/26. DOI: 10.1038/sj.jcbfm.9600570.
19. Habeck C, Foster NL, Perneczky R, et al. Multivariate and univariate neuroimaging biomarkers of Alzheimer's disease. Neuroimage 2008; 40: 1503-1515. 2008/03/18. DOI: 10.1016/j.neuroimage.2008.01.056.
20. Spetsieris PG, Ma Y, Dhawan V, et al. Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features. Neuroimage 2009; 45: 1241-1252. 2009/04/08. DOI: 10.1016/j.neuroimage.2008.12.063.
21. Nobili F, Salmaso D, Morbelli S, et al. Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging 2008; 35: 2191-2202. 2008/07/24. DOI: 10.1007/s00259-008-0869-z.
22. Melzer TR, Watts R, MacAskill MR, et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease. Brain 2011; 134: 845-855. 2011/02/12. DOI: 10.1093/brain/awq377.
23. North American Symptomatic Carotid Endarterectomy Trial. Methods, patient characteristics, and progress. Stroke 1991; 22: 711-720. 1991/06/01. DOI: 10.1161/01.str.22.6.711.
24. Sutton-Tyrrell K, Alcorn HG, Wolfson SK, Jr., et al. Predictors of carotid stenosis in older adults with and without isolated systolic hypertension. Stroke 1993; 24: 355-361. 1993/03/01. DOI: 10.1161/01.str.24.3.355.
25. Iadecola C and Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab 2008; 7: 476-484. 2008/06/05. DOI: 10.1016/j.cmet.2008.03.010.
26. Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015; 73: 102-116. 2014/04/10. DOI: 10.1002/mrm.25197.
27. Hirsch NM, Toth V, Forschler A, et al. Technical considerations on the validity of blood oxygenation level-dependent-based MR assessment of vascular deoxygenation. NMR Biomed 2014; 27: 853-862. 2014/05/09. DOI: 10.1002/nbm.3131.
28. Kaczmarz S, Hyder F and Preibisch C. Oxygen extraction fraction mapping with multi-parametric quantitative BOLD MRI: Reduced transverse relaxation bias using 3D-GraSE imaging. Neuroimage 2020; 220: 117095. 2020/07/01. DOI: 10.1016/j.neuroimage.2020.117095.
29. Joliot M, Jobard G, Naveau M, et al. AICHA: An atlas of intrinsic connectivity of homotopic areas. J Neurosci Methods 2015; 254: 46-59. 2015/07/28. DOI: 10.1016/j.jneumeth.2015.07.013.
30. Hoffmann G, Reichert M, Göttler J, et al. Perfusion territory shifts in asymptomatic carotid artery stenosis measured by super-selective arterial spin labelling. In: Proceedings of the 31st Annual Meeting of the ISMRM London, 2022.
31. Ostergaard L, Engedal TS, Moreton F, et al. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab 2016; 36: 302-325. 2015/12/15. DOI: 10.1177/0271678X15606723.
Figure 1: Imaging protocol and principal component analysis (PCA). The MR protocol comprised MPRAGE, multiparametric quantitative BOLD (mqBOLD)27 and pseudo-continuous arterial spin labelling (pCASL).26 CBF, OEF, CMRO2 and effective oxygen diffusivity (EOD)15 mean values were extracted in grey matter VOIs using the AICHA atlas.29 PCA was applied to derive disease-related covariance patterns following a widely used approach.19,20 Pattern scores were correlated with clinical information.
Figure 2: Topography of ICAS-related hemodynamic patterns and comparison of absolute parameter values. Perfusion and oxygenation patterns are shown on the left. Only areas with positive (red) or negative (blue) loadings surviving the bootstrapping procedure are displayed. White arrow indicates side of stenosis. The right panel shows absolute, per-group mean parameter differences (diamonds) between ICAS patients and HC in areas with positive, negative and small, unstable loadings (black) with 95% confidence intervals (vertical lines).
Figure 3: Comparison of mean network score, interhemispheric lateralization and receiver operating characteristic curves (ROC). Mean pattern score (left) and interhemispheric lateralization (middle) of mean GM values were compared between ICAS and HC for each hemodynamic parameter using two-sample t-tests. Positive lateralization indicates higher values on left/unaffected side of HC/ICAS patients. ROCs (right) comparing discriminative ability of pattern score, lateralization and global mean GM.
Figure 5: Multiple regression for blood pressure, age and sex as predictors of EOD (top) and CMRO2 (bottom) network score. Blue dots correspond to an individual patient data, while orange dots indicate HC. A multiple linear regression model accounting for age (middle) and sex (right) was fit for EOD and CMRO2 to explore the relationship between systolic blood pressure (left) and pattern scores across ICAS and HC. Blood pressure and sex correlated with both, while age was significant only for EOD.