Keywords: Image Reconstruction, Image Reconstruction
Learning-based MRI reconstruction is commonly performed using non-adaptive models with frozen weights during inference. Non-adaptive conditional models poorly generalize across variable imaging operators, whereas non-adaptive unconditional models poorly generalize across variations in the image distribution. Here, we introduce a novel adaptive method, AdaDiff, that trains an unconditional diffusion prior for high-fidelity image generations and adapts the prior during inference for improved generalization. AdaDiff outperforms state-of-the-art baselines both visually and quantitatively.[1] Lustig, M., Donoho, D., Pauly, J.M., 2007. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine 58, 1182–1195.
[2] Gu, H., Yaman, B., Ugurbil, K., Moeller, S., Akçakaya, M., 2021. Compressed sensing MRI with ℓ1-wavelet reconstruction revisited using modern data science tools, in: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE. pp. 3596–3.
[3] Haldar, J.P., Zhuo, J., 2016. P-LORAKS: Low-Rank Modeling of Local k-Space Neighborhoods with Parallel Imaging Data. Magnetic resonance in medicine 75, 1499.
[4] Hammernik, K., Klatzer, T., Kobler, E., Recht, M.P., Sodickson, D.K., Pock, T., Knoll, F., 2017. Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance in Medicine 79, 3055–3071.
[5] Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A.G., Tamir, J., 2021. Robust compressed sensing MRI with deep generative priors, in: Advances in Neural Information Processing Systems, pp. 14938–14954.
[6] Liu, Q., Yang, Q., Cheng, H., Wang, S., Zhang, M., Liang, D., 2020. Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors. Magnetic Resonance in Medicine 83, 322–336.
[7] Mardani, M., Gong, E., Cheng, J.Y., Vasanawala, S., Zaharchuk, G., Xing, L., Pauly, J.M., 2019. Deep generative adversarial neural networks for compressive sensing MRI. IEEE Transactions on Medical Imaging 38, 167–179.
[8] Luo, G., Heide, M., Uecker, M., 2022. MRI reconstruction via data driven Markov chain with joint uncertainty estimation. arXiv:2202.01479.
[9] Liang, D., Cheng, J., Ke, Z., Ying, L., 2020. Deep magnetic resonance image reconstruction: Inverse problems meet neural networks. IEEE Signal Processing Magazine 37, 141–151.
[10] Dar, S.U., Yurt, M., Shahdloo, M., Ildız, M.E., Tınaz, B., Çukur, T., 2020a. Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks. IEEE Journal of Selected Topics in Signal Processing 14, 1072–1087.
[11] Aggarwal, H.K., Mani, M.P., Jacob, M., 2019. MoDL: Model-Based deep-learning architecture for inverse problems. IEEE Transactions on Medical Imaging 38, 394–405.
[12] Narnhofer, D., Hammernik, K., Knoll, F., Pock, T., 2019. Inverse GANs for accelerated MRI reconstruction, in: Proceedings of SPIE, pp. 381 – 392.
[13] Peng, C., Guo, P., Zhou, S.K., Patel, V., Chellappa, R., 2022. Towards performant and reliable undersampled mr reconstruction via diffusion model sampling. arXiv:2203.04292.
[14] Chung, H., Sim, B., Ye, J.C., 2022. Come-closer-diffuse-faster: Accelerating conditional diffusion models for inverse problems through stochastic contraction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12413–12422.
[15] Ho, J., Jain, A., Abbeel, P., 2020. Denoising diffusion probabilistic models, in: Advances in Neural Information Processing Systems, pp. 6840–6851.
[16] Xiao, Z., Kreis, K., Vahdat, A., 2022. Tackling the generative learning trilemma with denoising diffusion GANs, in: International Conference on Learning Representations (ICLR).
[17] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
[18] IXI Dataset. http://www.brain-development.org/ixi-dataset/.
[19] Knoll, F., Zbontar, J., Sriram, A., Muckley, M.J., Bruno, M., Defazio, A., Parente, M., Geras, K.J., Katsnelson, J., Chandarana, H., Zhang, Z., Drozdzalv, M., Romero, A., Rabbat, M., Vincent, P., Pinkerton, J., Wang, D., Yakubova, N., Owens, E., Zitnick, C.L., Recht, M.P., Sodickson, D.K., Lui, Y.W., 2020. fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiology: Artificial Intelligence 2, e190007.