Keywords: Segmentation, Brain
Brain Extraction is a complicated semantic segmentation task. While Deep Learning methods are popularly used, they are heavily biased towards the training dataset. To reduce this dependency, we present EVAC (Enhanced V-net like Architecture with Conditional Random Fields), a novel Deep Learning model for Brain Extraction. Using V-net as a skeleton, we propose three improvements: multi-scale inputs, modified CRF layer and regularizing Dice Loss. Results show that these changes not only increase accuracy but also the efficiency of the model as well. Compared to the state-of-the-art methods, our model achieves high and stable accuracy across datasets.Rehman, H. Z. U., Hwang, H., & Lee, S. (2020). Conventional and deep learning methods for skull stripping in brain MRI. Applied Sciences, 10(5), 1773.
Krähenbühl, P., & Koltun, V. (2011). Efficient inference in fully connected crfs with gaussian edge potentials. Advances in neural information processing systems, 24.
Monteiro, M., Figueiredo, M. A., & Oliveira, A. L. (2018). Conditional random fields as recurrent neural networks for 3d medical imaging segmentation. arXiv preprint arXiv:1807.07464.
Milletari, F., Navab, N., & Ahmadi, S. A. (2016, October). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV) (pp. 565-571). IEEE.
Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
Mehta, R., & Sivaswamy, J. (2017, April). M-net: A convolutional neural network for deep brain structure segmentation. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (pp. 437-440). IEEE.
Xu, Y., Gong, M., Fu, H., Tao, D., Zhang, K., & Batmanghelich, K. (2018, September). Multi-scale masked 3-D U-net for brain tumor segmentation. In International MICCAI Brainlesion Workshop (pp. 222-233). Springer, Cham.
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., ... & Torr, P. H. (2015). Conditional random fields as recurrent neural networks. In Proceedings of the IEEE international conference on computer vision (pp. 1529-1537).
Eskildsen, S. F., Coupé, P., Fonov, V., Manjón, J. V., Leung, K. K., Guizard, N., ... & Alzheimer's Disease Neuroimaging Initiative. (2012). BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage, 59(3), 2362-2373.
Smith, S. M. (2000). BET: Brain extraction tool. FMRIB TR00SMS2b, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, John Radcliffe Hospital, Headington, UK.
Isensee, F., Schell, M., Pflueger, I., Brugnara, G., Bonekamp, D., Neuberger, U., ... & Kickingereder, P. (2019). Automated brain extraction of multisequence MRI using artificial neural networks. Human brain mapping, 40(17), 4952-4964.
Hoopes, A., Mora, J. S., Dalca, A. V., Fischl, B., & Hoffmann, M. (2022). SynthStrip: Skull-Stripping for Any Brain Image. arXiv preprint arXiv:2203.09974.
Cullen, N. C., & Avants, B. B. (2018). Convolutional neural networks for rapid and simultaneous brain extraction and tissue segmentation. In Brain Morphometry (pp. 13-34). Humana Press, New York, NY.
Speier, W., Iglesias, J. E., El-Kara, L., Tu, Z., & Arnold, C. (2011, September). Robust skull stripping of clinical glioblastoma multiforme data. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 659-666). Springer, Berlin, Heidelberg.
Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., ... & Toga, A. W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 39(3), 1064-1080.
Hammers, A., Allom, R., Koepp, M. J., Free, S. L., Myers, R., Lemieux, L., ... & Duncan, J. S. (2003). Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human brain mapping, 19(4), 224-247.
Gousias, I. S., Rueckert, D., Heckemann, R. A., Dyet, L. E., Boardman, J. P., Edwards, A. D., & Hammers, A. (2008). Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. Neuroimage, 40(2), 672-684.
Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., ... & Dipy Contributors. (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers in neuroinformatics, 8, 8.
IXI Dataset – Brain Development. (n.d.). https://brain-development.org/ixi-dataset/