Keywords: Microstructure, Diffusion/other diffusion imaging techniques
Oscillating gradient spin echo (OGSE) sequence is an effective approach to measure time-dependent diffusion processes at short diffusion times. High-performance, head-only gradient systems open new opportunities for using OGSE to study time-dependent diffusion with both high b-values and oscillating frequencies, such as diffusion kurtosis imaging (DKI). One source of error that can be more problematic for the head-only gradients is gradient nonlinearity (GNL). Here, we measure the time dependence of diffusion tensor imaging (DTI)/DKI in human brains with OGSE on a head-only MAGNUS gradient and investigate the influence of GNL on the time dependence measures of diffusivity/kurtosis.
We thank the support from GE Healthcare and the funding from Congressional Directed Medical Research Programs (CDMRP) W81XWH-16-2-0054.
1. Does MD, Parsons EC, Gore JC. Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. Magn Reson Med 2003;49:206-215.
2. Fieremans E, Burcaw LM, Lee HH, et al. In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter. Neuroimage 2016;129:414-427.
3. Lee HH, Papaioannou A, Novikov DS, Fieremans E. In vivo observation and biophysical interpretation of time-dependent diffusion in human cortical gray matter. Neuroimage 2020;222117054.
4. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005;53:1432-1440.
5. Tan ET, Shih RY, Mitra J, et al. Oscillating diffusion-encoding with a high gradient-amplitude and high slew-rate head-only gradient for human brain imaging. Magn Reson Med 2020;84:950-965.
6. Hennel F, Michael ES, Pruessmann KP. Improved gradient waveforms for oscillating gradient spin-echo (OGSE) diffusion tensor imaging. NMR Biomed 2021;34e4434.
7. Newitt DC, Tan ET, Wilmes LJ, et al. Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the american college of radiology imaging network 6698 breast cancer trial. J Magn Reson Imaging 2015;42:908-919.
8. Tao S, Trzasko JD, Gunter JL, et al. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system. Phys Med Biol 2017;62:N18-N31.
9. Tao AT, Shu Y, Tan ET, et al. Improving apparent diffusion coefficient accuracy on a compact 3T MRI scanner using gradient nonlinearity correction. J Magn Reson Imaging 2018;48:1498-1507.
10. Foo TKF, Laskaris E, Vermilyea M, et al. Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities. Magn Reson Med 2018.
11. Foo TKF, Laskaris E, Vermilyea M, et al. Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities. Magn Reson Med 2018;80:2232-2245.
12. Foo TKF, Tan ET, Vermilyea ME, et al. Highly efficient head-only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging. Magn Reson Med 2020;83:2356-2369.
13. Yang GK, Tan ET, Fiveland E, Foo T, McNab JA. Measuring time-dependent diffusion kurtosis using the MAGNUS high-performance head gradient. In Proceedings of the 28th Annual Meeting of ISMRM, Virtual Meeting, 2020. Abstract 0962.
14. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 2003;20:870-888.
15. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 2016;125:1063-1078.
16. Ades-Aron B, Veraart J, Kochunov P, et al. Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline. Neuroimage 2018;183:532-543.
17. Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). Insight j 2009;2:1-35.
18. Tan ET, Marinelli L, Slavens ZW, King KF, Hardy CJ. Improved correction for gradient nonlinearity effects in diffusion-weighted imaging. J Magn Reson Imaging 2013;38:448-453.
19. Fischl B. FreeSurfer. Neuroimage 2012;62:774-781.
20. Novikov DS, Jensen JH, Helpern JA, Fieremans E. Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci U S A 2014;111:5088-5093.
21. Aggarwal M, Smith MD, Calabresi PA. Diffusion-time dependence of diffusional kurtosis in the mouse brain. Magn Reson Med 2020;84:1564-1578.
Figure 1. (A) Example GM ROIs (red: thalamus; green: precentral cortex; blue: postcentral cortex). (B) Example b value (nominal b=2000 s/mm2) with and without GNC. Diffusion measure maps (MDDTI, MDDKI, and MK) without and with GNC at f=0 are shown in (C) and (D), respectively. The relative MD (MK) difference maps (%) with and without GNC are displayed in (E).
Table 2. Median MDDTI, MDDKI, and MK values in three selected GM ROIs (Figure 1A) with and without GNC at different frequencies for a single subject.
Figure 2. MD and MK measures (averaged across different subjects) and power-law fitting curves, with (solid lines and circles) and without (dashed lines and asterisks) GNC.
Table 3. Power-law fitting results of diffusivity and kurtosis in three selected GM ROIs using DTI and DKI models with and without GNC.