Keywords: Microstructure, Diffusion/other diffusion imaging techniques
Using an integrative acquisition and processing pipeline that joins concepts from oscillating gradients, tensor-valued encoding, and diffusion-relaxation correlation, we comprehensively explored microstructure and local chemical composition in the human brain. Using both frequency-dependent and tensorial aspects of the encoding spectrum b(ω), we designed an in vivo, whole brain, 40-min 7D D(ω)-R1-R2 distribution acquisition protocol at 2mm isotropic resolution. Scanning eleven healthy participants, we demonstrated frequency/time-dependent changes of diffusion-relaxation correlations measures in the human brain. Finally, intra-scan test–retest repeatability of a range of reconstructed parametric maps was investigated.
1. Galvosas, P. and P.T. Callaghan, Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media. Comptes Rendus Physique, 2010. 11(2): p. 172-180
2. Bernin, D. and D. Topgaard, NMR diffusion and relaxation correlation methods: New insights in heterogeneous materials. Current Opinion in Colloid & Interface Science, 2013. 18(3): p. 166-172
3. Song, Y.-Q., et al., Chapter 4: Two-dimensional NMR of Diffusion and Relaxation, in Diffusion NMR of Confined Systems: Fluid Transport in Porous Solids and Heterogeneous Materials. 2017, The Royal Society of Chemistry. p. 111-155
4. Tax, C.M., Estimating Chemical and Microstructural Heterogeneity by Correlating Relaxation and Diffusion. Advanced Diffusion Encoding Methods in MRI, 2020. 24: p. 186
5. Benjamini, D. and P.J. Basser, Multidimensional correlation MRI. NMR in Biomedicine, 2020. 33(12): p. e4226
6. Zhang, Y. and B. Blümich, Spatially resolved D–T2 correlation NMR of porous media. Journal of Magnetic Resonance, 2014. 242: p. 41-48
7. Kim, D., et al., Diffusion-relaxation correlation spectroscopic imaging: A multidimensional approach for probing microstructure. Magnetic Resonance in Medicine, 2017. 78(6): p. 2236-2249
8. Benjamini, D. and P.J. Basser, Magnetic resonance microdynamic imaging reveals distinct tissue microenvironments. NeuroImage, 2017. 163: p. 183-196
9. De Santis, S., et al., T1 relaxometry of crossing fibres in the human brain. NeuroImage, 2016. 141: p. 133-142
10. De Santis, S., et al., Resolving relaxometry and diffusion properties within the same voxel in the presence of crossing fibres by combining inversion recovery and diffusion-weighted acquisitions. Magnetic Resonance in Medicine, 2016. 75(1): p. 372-380
11. Veraart, J., D.S. Novikov, and E. Fieremans, TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T2 relaxation times. NeuroImage, 2018. 182: p. 360-369
12. Veraart, J., et al., Model-based Analysis of Advanced Diffusion Data. Advanced Diffusion Encoding Methods in MRI, 2020. 24: p. 317
13. Slator, P.J., et al., Combined diffusion-relaxometry MRI to identify dysfunction in the human placenta. Magnetic Resonance in Medicine, 2019. 82(1): p. 95-106
14. Benjamini, D., Priemer, D.S., Perl, D.P., Brody, D.L., and Basser, P.J. Mapping astrogliosis in the individual human brain using multidimensional MRI. Brain, awac298, https://doi.org/10.1093/brain/awac298
15. Narvaez O, et al. Model-free Approach to the Interpretation of Restricted and Anisotropic Self-Diffusion in Magnetic Resonance of Biological Tissues. arXiv [Preprint], 2021.
16. Basser, P.J. and S. Pajevic, A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI. IEEE Transactions on Medical Imaging, 2003. 22(7): p. 785-794
17. Jian, B., et al., A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage, 2007. 37(1): p. 164-176
18. Topgaard, D., Diffusion tensor distribution imaging. NMR in Biomedicine, 2019. 32(5): p. e4066
19. Westin, C.-F., et al. Measurement Tensors in Diffusion MRI: Generalizing the Concept of Diffusion Encoding. 2014. Cham: Springer International Publishing
20. Topgaard, D., Multidimensional diffusion MRI. Journal of Magnetic Resonance, 2017. 275: p. 98-113
21. Reymbaut, A., Diffusion Anisotropy and Tensor-valued Encoding. Advanced Diffusion Encoding Methods in MRI, 2020. 4: p. 68
22. Prange, M. and Y.-Q. Song, Quantifying uncertainty in NMR T2 spectra using Monte Carlo inversion. Journal of Magnetic Resonance, 2009. 196(1): p. 54-60
23. de Kort, D.W., et al., NMR Nanoparticle Diffusometry in Hydrogels: Enhancing Sensitivity and Selectivity. Analytical Chemistry, 2014. 86(18): p. 9229-9235
24. Narvaez, O., et al. Massively Multidimensional Diffusion-Relaxation Correlation MRI. Frontiers in Physics, 2022. 9.
25. Martin, J., et al. Nonparametric D-R1-R2 distribution MRI of the living human brain. NeuroImage, 2021. 245: 118753.
26. Sjölund, J., et al., Constrained optimization of gradient waveforms for generalized diffusion encoding. Journal of Magnetic Resonance, 2015. 261: p. 157-168
27. Pierpaoli C, Walker L, Irfanoglu MO, Barnett AS, Chang LC, Koay CG et al. TORTOISE: An integrated software package for processing of diffusion MRI data. In Proceedings of International Society of Magnetic Resonance in Medicine; 2010, p.1597.
28. Irfanoglu M.O., Nayak A, Jenkins J, Pierpaoli C. TORTOISEV3: Improvements and New Features of the NIH Diffusion MRI Processing Pipeline, In Proceedings of International Society of Magnetic Resonance in Medicine; 2017, p.3540.
29. Johnson JTE, Irfanoglu MO, Ross TJ, Yang Y, Topgaard D, Benjamini D. Evaluating preprocessing strategies for diffusion-relaxation correlation multidimensional MRI, In Proceedings of International Society of Magnetic Resonance in Medicine; 2023.
30. Nilsson, M., et al. An open-source framework for analysis of multidimensional diffusion MRI data implemented in MATLAB. in Proc Intl Soc Mag Reson Med. 2018
31. Aggarwal, M., et al. Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magnetic Resonance in Medicine, 2012. 67(1): 98–109.
32. Shrout, P.E., & Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 1979. 86(2), 420–428.
33. Koo, T. K., & Li, M. Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 2016. 15(2), 155–163.
34. Landis, J.R., & Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics, 1977. 33(1), 159.
35. Rubner, Y., Tomasi, C., & Guibas, L. J. A metric for distributions with applications to image databases. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 1998, 59–66.
Figure 3. Parameter maps derived from voxelwise D(ω)-R1-R2 distributions. (a) S0 map displayed in gray scale, diagram with the division of the 2D Diso-DΔ2 projection into three bins (bin1,bin2,bin3), and the resulting signal fractions (fbin1,fbin2,fbin3) coded into RGB color. (b) Per-voxel means E[x], variances V[x], and covariances C[x,y] at frequency 6.5Hz. (c) Parameter maps of the rate of change with frequency, Δω/2π. (d) Bin-resolved maps of E[x] and Δω/2πE[x]. The brightness and color scales represent, respectively, the signal fractions and the values of each parameter.
Figure 5. Test-retest variability (VAR) and repeatability (ICC(3,1)) calculated from a subset of three participants with repeat visits. Whole-brain averages were used, and VAR and ICC(3,1) are shown for seven parametric maps: E[Diso], E[DΔ2], E[R1], E[R2], fbin1, fbin2, and fbin3. E[R2] yielded negative ICC, which is theoretically difficult to interpret, and therefore was set to zero.