Keywords: Multiple Sclerosis, MR Fingerprinting
White matter hyperintensities are an MRI biomarker of Multiple Sclerosis (MS). However, not all white matter changes are visible on conventional, qualitative MRI. We applied a multi-component MR Fingerprinting protocol to identify potential white matter abnormalities based on increased $$$T_2^*$$$-values. FLAIR and MRF scans were performed in 44 MS patients and 12 healthy control subjects. Significant differences were found in the volume of MRF components with 500ms<$$$T_1, T_2^*$$$<2.5s. This volume correlated moderately with white matter damage on structural MR images. The MRF approach identified larger abnormal tissue volumes than those visible on the structural scans.[1] C. Laule et al., “Diffusely Abnormal White Matter in Multiple Sclerosis: Further Histologic Studies Provide Evidence for a Primary Lipid Abnormality With Neurodegeneration,” J. Neuropathol. Exp. Neurol., vol. 72, no. 1, pp. 42–52, Jan. 2013, doi: 10.1097/NEN.0b013e31827bced3.
[2] J. Cairns et al., “Diffusely abnormal white matter in multiple sclerosis,” J. Neuroimaging, vol. 32, no. 1, pp. 5–16, 2022, doi: 10.1111/jon.12945.
[3] N. M. Moll et al., “Multiple sclerosis normal-appearing white matter: Pathology–imaging correlations,” Ann. Neurol., vol. 70, no. 5, pp. 764–773, 2011, doi: 10.1002/ana.22521.
[4] M. Filippi et al., “Association between pathological and MRI findings in multiple sclerosis,” Lancet Neurol., vol. 18, no. 2, pp. 198–210, Feb. 2019, doi: 10.1016/S1474-4422(18)30451-4.
[5] I. Hermann et al., “Accelerated white matter lesion analysis based on simultaneous T1 and T2* quantification using magnetic resonance fingerprinting and deep learning,” Magn. Reson. Med., vol. 86, no. 1, pp. 471–486, 2021, doi: 10.1002/mrm.28688.
[6] B. Rieger, F. Zimmer, J. Zapp, S. Weingärtner, and L. R. Schad, “Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and relaxation times,” Magn. Reson. Med., vol. 78, no. 5, pp. 1724–1733, 2017, doi: 10.1002/mrm.26561.
[7] B. Rieger et al., “Time efficient whole-brain coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging,” Sci. Rep., vol. 8, no. 1, p. 6667, Apr. 2018, doi: 10.1038/s41598-018-24920-z.
[8] M. A. Nagtegaal, P. Koken, T. Amthor, and M. Doneva, “Fast multi-component analysis using a joint sparsity constraint for MR fingerprinting,” Magn. Reson. Med., vol. 83, no. 2, pp. 521–534, 2020, doi: 10.1002/mrm.27947.
[9] J. Veraart, D. S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers, and E. Fieremans, “Denoising of diffusion MRI using random matrix theory,” NeuroImage, vol. 142, pp. 394–406, Nov. 2016, doi: 10.1016/j.neuroimage.2016.08.016.
[10] A. Seewann et al., “Diffusely Abnormal White Matter in Chronic Multiple Sclerosis: Imaging and Histopathologic Analysis,” Arch. Neurol., vol. 66, no. 5, pp. 601–609, May 2009, doi: 10.1001/archneurol.2009.57.
[11] D. L. Collins, A. P. Zijdenbos, W. F. C. Baaré, and A. C. Evans, “ANIMAL+INSECT: Improved Cortical Structure Segmentation,” in Information Processing in Medical Imaging, vol. 1613, A. Kuba, M. Šáamal, and A. Todd-Pokropek, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 210–223. doi: 10.1007/3-540-48714-X_16.
[12] V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins, “Unbiased nonlinear average age-appropriate brain templates from birth to adulthood,” NeuroImage, vol. 47, p. S102, Jul. 2009, doi: 10.1016/S1053-8119(09)70884-5.
[13] V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, and D. L. Collins, “Unbiased average age-appropriate atlases for pediatric studies,” NeuroImage, vol. 54, no. 1, pp. 313–327, Jan. 2011, doi: 10.1016/j.neuroimage.2010.07.033.
[14] C. Laule et al., “MR evidence of long T2 water in pathological white matter,” J. Magn. Reson. Imaging, vol. 26, no. 4, pp. 1117–1121, 2007, doi: 10.1002/jmri.21132.
[15] C. Laule et al., “Long T2 water in multiple sclerosis: What else can we learn from multi-echo T2 relaxation?,” J. Neurol., vol. 254, no. 11, pp. 1579–1587, Nov. 2007, doi: 10.1007/s00415-007-0595-7.
[16] A. Deshmane et al., “Partial volume mapping using magnetic resonance fingerprinting,” NMR Biomed., vol. 0, no. 0, p. e4082, Mar. 2019, doi: 10.1002/nbm.4082.
[17] Wardlaw Joanna M., Valdés Hernández Maria C., and Muñoz‐Maniega Susana, “What are White Matter Hyperintensities Made of?,” J. Am. Heart Assoc., vol. 4, no. 6, p. e001140, 2015, doi: 10.1161/JAHA.114.001140.
[18] Schmidt, Paul, “Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging,” Ludwig-Maximilians-Universität München, 2017. doi: 10.5282/EDOC.20373.
[19] J. Ashburner and K. J. Friston, “Unified segmentation,” NeuroImage, vol. 26, no. 3, pp. 839–851, Jul. 2005, doi: 10.1016/j.neuroimage.2005.02.018.
[20] “SPM - Statistical Parametric Mapping.” https://www.fil.ion.ucl.ac.uk/spm/