Keywords: Machine Learning/Artificial Intelligence, Machine Learning/Artificial Intelligence
High-resolution, multi-contrast magnetic resonance imaging (MRI) protocols are required for accurate clinical diagnoses, but are limited by long scan times. Recovering high-quality, multi-contrast images from low-quality accelerated acquisitions is a promising approach to mitigate this limitation. Prior studies have demonstrated deep-learning for tasks such as contrast synthesis, image super-resolution, and image reconstruction. However, each of these tasks requires different architectures and training paradigms. Motivated by these challenges, we introduce a unified conditional denoising diffusion probabilistic model (DDPM) for inverse MR image recovery. Experiments performed on three image recovery tasks demonstrate that DDPMs achieve superior performance compared to prior state-of-the-art approaches.1. https://brain-development.org/ixi-dataset/
2. Chaudhari, A.S., Fang, Z., Kogan, F., Wood, J., Stevens, K.J., Gibbons, E.K., Lee,J.H., Gold, G.E., Hargreaves, B.A.: Super-resolution musculoskeletal mri using deeplearning. Magnetic resonance in medicine 80(5), 2139–2154 (2018)
3. Chaudhari, A.S., Sandino, C.M., Cole, E.K., Larson, D.B., Gold, G.E., Vasanawala,S.S., Lungren, M.P., Hargreaves, B.A., Langlotz, C.P.: Prospective deployment ofdeep learning in mri: a framework for important considerations, challenges, andrecommendations for best practices. Journal of Magnetic Resonance Imaging 54(2),357–371 (2021)
4. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated mri (2022)
5. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthe-sis in multi-contrast mri with conditional generative adversarial networks. IEEETransactions on Medical Imaging 38(10), 2375–2388 (2019). https://doi.org/10.1109/TMI.2019.2901750
6. Hammernik, K., Klatzer, T., Kobler, E., Recht, M.P., Sodickson, D.K., Pock, T.,Knoll, F.: Learning a variational network for reconstruction of accelerated mri data.Magnetic resonance in medicine 79(6), 3055–3071 (2018)
7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle,H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in NeuralInformation Processing Systems. vol. 33, pp. 6840–6851. Curran Associates, Inc.(2020), https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-tional adversarial networks. In: Proceedings of the IEEE conference on computervision and pattern recognition. pp. 1125–1134 (2017)
9. Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A.G., Tamir, J.: Robustcompressed sensing mri with deep generative priors. Advances in Neural InformationProcessing Systems 34 (2021)
10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR(Poster) (2015), http://arxiv.org/abs/1412.6980
11. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing mri. IEEEsignal processing magazine 25(2), 72–82 (2008). https://doi.org/10.1109/MSP.2007.914728
12. Mardani, M., Gong, E., Cheng, J.Y., Vasanawala, S.S., Zaharchuk, G., Xing, L.,Pauly, J.M.: Deep generative adversarial neural networks for compressive sensingmri. IEEE transactions on medical imaging 38(1), 167–179 (2018)
13. Muckley, M.J., Riemenschneider, B., Radmanesh, A., Kim, S., Jeong, G., Ko, J.,Jun, Y., Shin, H., Hwang, D., Mostapha, M., et al.: Results of the 2020 fastmrichallenge for machine learning mr image reconstruction. IEEE transactions onmedical imaging 40(9), 2306–2317 (2021)
14. Ozturkler, B., Sahiner, A., Ergen, T., Desai, A.D., Sandino, C.M., Vasanawala,S., Pauly, J.M., Mardani, M., Pilanci, M.: Gleam: Greedy learning for large-scaleaccelerated mri reconstruction (2022). https://doi.org/10.48550/ARXIV.2207.08393, https://arxiv.org/abs/2207.08393
15. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS(2019)
16. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedicalimage segmentation. In: International Conference on Medical image computing andcomputer-assisted intervention. pp. 234–241. Springer (2015)
17. Saharia, C., Chan, W., Chang, H., Lee, C.A., Ho, J., Salimans, T., Fleet, D.J.,Norouzi, M.: Palette: Image-to-image diffusion models (2021)
18. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Imagesuper-resolution via iterative refinement. arXiv preprint arXiv:2104.07636 (2021)
19. Sandino, C.M., Cheng, J.Y., Chen, F., Mardani, M., Pauly, J.M., Vasanawala, S.S.:Compressed sensing: From research to clinical practice with deep neural networks:Shortening scan times for magnetic resonance imaging. IEEE signal processingmagazine 37(1), 117–127 (2020)
20. Song, Y., Shen, L., Xing, L., Ermon, S.: Solving inverse problems in medical imagingwith score-based generative models. In: International Conference on LearningRepresentations (2022), https://openreview.net/forum?id=vaRCHVj0uGI
21. Dalmaz O, Yurt M, Cukur T. ResViT: Residual Vision Transformers for Multimodal Medical Image Synthesis. IEEE TMI 2022; 3167808
22. Xie, Y., & Li, Q. (2022). Measurement-conditioned Denoising Diffusion Probabilistic Model for Under-sampled Medical Image Reconstruction. arXiv preprint arXiv:2203.03623.
23. Chung, H., Lee, E. S., & Ye, J. C. (2022). MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion. arXiv preprint arXiv:2203.12621.
24. Dorjsembe, Z., Odonchimed, S., & Xiao, F. (2022, April). Three-Dimensional Medical Image Synthesis with Denoising Diffusion Probabilistic Models. In Medical Imaging with Deep Learning.