Keywords: Bone, Aging, Osteoporosis, Porosity, ultrashort echo time
While ultrashort echo time (UTE) measures of pore water have shown promise in assessing cortical bone porosity, most are hindered by the need for complicated processing and reference samples. The suppression ratio (SR) is a marker of porosity which is simply calculated as the voxel-wise ratio of two UTE magnitude images, one without and with long-T2 suppression. Automated cortical bone segmentation via deep learning showed elevated SR in postmenopausal women with osteoporosis (P=0.001) and was strongly associated with pore water density (R=0.93) and with pQCT BMD (R=-0.88). Results suggest that SR can detect elevated porosity in postmenopausal osteoporosis.1. Bouxsein, M.L., Technology insight: noninvasive assessment of bone strength in osteoporosis. Nat Clin Pract Rheumatol, 2008. 4(6): p. 310-8.
2. Seeman, E. and P.D. Delmas, Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med, 2006. 354(21): p. 2250-61.
3. Hansen, S., E.M. Hauge, J.E. Jensen, and K. Brixen, Differing effects of PTH 1-34, PTH 1-84 and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis. An 18 month open-labeled observational study using HR-pQCT. J Bone Miner Res, 2012.
4. Kanis, J.A., C. Cooper, R. Rizzoli, and J.Y. Reginster, European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int, 2019. 30(1): p. 3-44.
5. Tsai, J.N., K.K. Nishiyama, D. Lin, A. Yuan, H. Lee, M.L. Bouxsein, and B.Z. Leder, Effects of Denosumab and Teriparatide Transitions on Bone Microarchitecture and Estimated Strength: the DATA-Switch HR-pQCT study. J Bone Miner Res, 2017. 32(10): p. 2001-2009.
6. Samelson, E.J., K.E. Broe, H. Xu, L. Yang, S. Boyd, E. Biver, P. Szulc, J. Adachi, S. Amin, E. Atkinson, C. Berger, L. Burt, R. Chapurlat, T. Chevalley, S. Ferrari, D. Goltzman, D.A. Hanley, M.T. Hannan, S. Khosla, C.T. Liu, M. Lorentzon, D. Mellstrom, B. Merle, M. Nethander, R. Rizzoli, E. Sornay-Rendu, B. Van Rietbergen, D. Sundh, A.K.O. Wong, C. Ohlsson, S. Demissie, D.P. Kiel, and M.L. Bouxsein, Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol, 2019. 7(1): p. 34-43.
7. Meunier, P.J. and G. Boivin, Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone, 1997. 21(5): p. 373-7.
8. Kral, R., M. Osima, T.T. Borgen, R. Vestgaard, E. Richardsen, and Å. Bjørnerem, Increased cortical porosity and reduced cortical thickness of the proximal femur are associated with nonvertebral fracture independent of Fracture Risk Assessment Tool and Garvan estimates in postmenopausal women. PLOS ONE, 2017. 12(9): p. e0185363.
9. Mikolajewicz, N., N. Bishop, A.J. Burghardt, L. Folkestad, A. Hall, K.M. Kozloff, P.T. Lukey, M. Molloy-Bland, S.N. Morin, A.C. Offiah, J. Shapiro, B. van Rietbergen, K. Wager, B.M. Willie, S.V. Komarova, and F.H. Glorieux, HR-pQCT Measures of Bone Microarchitecture Predict Fracture: Systematic Review and Meta-Analysis. Journal of Bone and Mineral Research, 2020. 35(3): p. 446-459.
10. Rajapakse, C.S., M. Bashoor-Zadeh, C. Li, W. Sun, A.C. Wright, and F.W. Wehrli, Volumetric Cortical Bone Porosity Assessment with MR Imaging: Validation and Clinical Feasibility. Radiology, 2015. 276(2): p. 526-35.
11. Biswas, R., W. Bae, E. Diaz, K. Masuda, C.B. Chung, G.M. Bydder, and J. Du, Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone, 2012. 50(3): p. 749-55.
12. Manhard, M.K., R.A. Horch, K.D. Harkins, D.F. Gochberg, J.S. Nyman, and M.D. Does, Validation of quantitative bound- and pore-water imaging in cortical bone. Magn Reson Med, 2014. 71(6): p. 2166-71.
13. Horch, R.A., D.F. Gochberg, J.S. Nyman, and M.D. Does, Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone. Magn Reson Med, 2012.
14. Zhao, X., H.K. Song, A.C. Seifert, C. Li, and F.W. Wehrli, Feasibility of assessing bone matrix and mineral properties in vivo by combined solid-state 1H and 31P MRI. PLoS One, 2017. 12(3): p. e0173995.
15. Jerban, S., Y. Ma, L. Li, H. Jang, L. Wan, T. Guo, A. Searleman, E.Y. Chang, and J. Du, Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques. Bone, 2019. 127: p. 120-128.
16. Manhard, M.K., S. Uppuganti, M. Granke, D.F. Gochberg, J.S. Nyman, and M.D. Does, MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone, 2016. 87: p. 1-10.
17. Bae, W.C., P.C. Chen, C.B. Chung, K. Masuda, D. D'Lima, and J. Du, Quantitative ultrashort echo time (UTE) MRI of human cortical bone: Correlation with porosity and biomechanical properties. J Bone Miner Res, 2012. 27(4): p. 848-57.
18. Jones, B., C. Cheng, X. Zhao, H. Lee, M. Al Mukaddam, P.J. Snyder, C.S. Rajapakse, H.K. Song, and F.W. Wehrli, Solid-state MR based quantitative assessment of bone water and 31P differentiates between postmenopausal women with and without osteoporosis. Proceedings of the International Society of Magnetic Resonance in Medicine, 2022(2022 Annual Meeting in London, England).
19. Li, C., A.C. Seifert, H.S. Rad, Y.A. Bhagat, C.S. Rajapakse, W. Sun, S.C. Lam, and F.W. Wehrli, Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology, 2014. 272(3): p. 796-806.
20. Li, C., J.F. Magland, X. Zhao, A.C. Seifert, and F.W. Wehrli, Selective in vivo bone imaging with long-T2 suppressed PETRA MRI. Magn Reson Med, 2016.
21. Ronneberger, O., P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. 2015. Cham: Springer International Publishing.