Keywords: Neonatal, fMRI (resting state), Neuroscience
We compared Hurst exponent (H) values in preterm and term healthy controls to quantify brain signaling criticality using rsfMRI scans. Neonatal data from the Developing Human Connectome Project was analyzed. We found that H significantly increased in the preterm groups longitudinally in all resting state networks. Motor and sensory networks were found to have the greatest increase in H. At term age, very preterm, moderately preterm, and health controls displayed different H values in 8 of the 13 networks examined.We would like to acknowledge funding support from British Columbia Children's Hospital and data from this study provided by the Developing Human Connectome Project. We would also like to acknowledge previous work done by Johann Drayne and research guidance from Tamara Vanderwal and Steven Miller.
1. Vo Van, P., Alison, M., Morel, B., Beck, J., Bednarek, N., Hertz-Pannier, L., & Loron, G. (2022). Advanced Brain Imaging in Preterm Infants: A Narrative Review of Microstructural and Connectomic Disruption. Children, 9(3), 356. https://doi.org/10.3390/children9030356
2. Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z., & Neil, J. J. (2010). Longitudinal Analysis of Neural Network Development in Preterm Infants. Cerebral Cortex, 20(12), 2852–2862. https://doi.org/10.1093/cercor/bhq035
3. Zimmern, V. (2020). Why Brain Criticality Is Clinically Relevant: A Scoping Review. Frontiers in Neural Circuits, 14, 54. https://doi.org/10.3389/fncir.2020.00054
4. Campbell, O. L., & Weber, A. M. (2022). Monofractal analysis of functional magnetic resonance imaging: An introductory review. Human Brain Mapping, 43( 8), 2693– 2706. https://doi.org/10.1002/hbm.25801
5. Diaz M, H. A., & Cordova, F. (2022). On the meaning of Hurst entropy applied to EEG data series. Procedia Computer Science, (199) 1385-1392. https://doi.org/10.1016/j.procs.2022.01.175
6. Hughes, E.J., Winchman, T., Padormo, F., Teixeira, R., Wurie, J., Sharma, M., Fox, M., Hutter, J., Cordero-Grande, L., Price, A.N., Allsop, J., Bueno-Conde, J., Tusor, N., Arichi, T., Edwards, A.D., Rutherford, M.A., Counsell, S.J. and Hajnal, J.V. (2017), A dedicated neonatal brain imaging system. Magn. Reson. Med., 78: 794-804. https://doi.org/10.1002/mrm.26462
7. Makropoulos, A., Robinson, E.C., Schuh, A., Wright, R., Fitzgibbon, S.P., Bozek, J., Counsell, S.J., Steinweg, J., Vecchiato, K., Passerat-Palmbach, J., Lenz, G., Mortari, F., Tenev, T., Duff, E.P., Bastiani, M., Cordero-Grande, L., Hughes, E., Tusor, N., Tournier, J.-D., Hutter, J., Price, A.N., Teixeira, R.P.A.G., Murgasova, M., Victor, S., Kelly, C., Rutherford, M.A., Smith, S., Edwards, A.D., Hajnal, J.V., Jenkinson, M., Rueckert, D. The Developing Human Connectome Project: a Minimal Processing Pipeline for Neonatal Cortical Surface Reconstruction NeuroImage (2018), 173: 88-112. DOI: 10.1016/j.neuroimage.2018.01.054
8. Fitzgibbon, SP., Harrison, SJ., Jenkinson, M., Baxter, L., Robinson, EC., Bastiani, M., Bozek, J., Karolis, V., Cordero Grande, L., Price, AN., Hughes, E., Makropoulos, A., Passerat-Palmbach, J., Schuh, A., Gao, J., Farahibozorg, S., O’Muircheartaigh, J., Ciarrusta, J., O’Keeffe, C., Brandon, J., Arichi, T., Rueckert, D., Hajnal, JV., Edwards, AD., Smith, SM., Duff, E., Andersson, J. The developing Human Connectome Project automated functional processing framework for neonates., NeuroImage (2020), 223: 117303, 2020. DOI: 10.1016/j.neuroimage.2020.117303 Authors contributed equally.