Keywords: Alzheimer's Disease, Neuroinflammation
Evidence suggests subjective cognitive decline (SCD) is an early risk factor for Alzheimer’s disease. We analyzed the associations between memory and diffusion microstructure in the lower cingulum white matter bundle in SCD with DTI and NODDI. Better memory performance was associated with decreased free water volume fraction (FWVF) in the SCD group but not the control group. To the best of our knowledge, this is the first study to find differences in the associations between NODDI FWVF and memory in SCD in the lower cingulum. This finding supports prior findings of increased neuroinflammation in the earliest stages of Alzheimer’s Disease.1. Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology. 2013;12(2):207-16.
2. Jessen F, Amariglio RE, Buckley RF, van der Flier WM, Han Y, Molinuevo JL, Rabin L, Rentz DM, Rodriguez-Gomez O, Saykin AJ. The characterisation of subjective cognitive decline. The Lancet Neurology. 2020;19(3):271-8.
3. Jessen F, Amariglio RE, Van Boxtel M, Breteler M, Ceccaldi M, Chételat G, Dubois B, Dufouil C, Ellis KA, Van Der Flier WM. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimer's & dementia. 2014;10(6):844-52.
4. Slot RE, Sikkes SA, Berkhof J, Brodaty H, Buckley R, Cavedo E, Dardiotis E, Guillo‐Benarous F, Hampel H, Kochan NA. Subjective cognitive decline and rates of incident Alzheimer's disease and non–Alzheimer's disease dementia. Alzheimer's & Dementia. 2019;15(3):465-76.
5. Mitchell AJ, Beaumont H, Ferguson D, Yadegarfar M, Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr Scand. 2014;130(6):439-51. doi: https://doi.org/10.1111/acps.12336.
6. Selnes P, Fjell AM, Gjerstad L, Bjørnerud A, Wallin A, Due-Tønnessen P, Grambaite R, Stenset V, Fladby T. White matter imaging changes in subjective and mild cognitive impairment. Alzheimer's & dementia. 2012;8:S112-S21.
7. Brueggen K, Dyrba M, Cardenas-Blanco A, Schneider A, Fliessbach K, Buerger K, Janowitz D, Peters O, Menne F, Priller J. Structural integrity in subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease based on multicenter diffusion tensor imaging. J Neurol. 2019;266(10):2465-74.
8. Sun Y, Yang FC, Lin CP, Han Y. Biochemical and neuroimaging studies in subjective cognitive decline: progress and perspectives. CNS Neurosci Ther. 2015;21(10):768-75. Epub 20150413. doi: 10.1111/cns.12395. PubMed PMID: 25864576; PMCID: PMC6493085.
9. Selnes P, Aarsland D, Bjornerud A, Gjerstad L, Wallin A, Hessen E, Reinvang I, Grambaite R, Auning E, Kjaervik VK, Due-Tonnessen P, Stenset V, Fladby T. Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment. J Alzheimers Dis. 2013;33(3):723-36. doi: 10.3233/JAD-2012-121603. PubMed PMID: 23186987.
10. Fan LY, Lai YM, Chen TF, Hsu YC, Chen PY, Huang KZ, Cheng TW, Tseng WYI, Hua MS, Chen YF. Diminution of context association memory structure in subjects with subjective cognitive decline. Hum Brain Mapp. 2018;39(6):2549-62.
11. Alves GS, O’Dwyer L, Jurcoane A, Oertel-Knöchel V, Knöchel C, Prvulovic D, Sudo F, Alves CE, Valente L, Moreira D. Different patterns of white matter degeneration using multiple diffusion indices and volumetric data in mild cognitive impairment and Alzheimer patients. PLoS One. 2012;7(12):e52859.
12. Wen Q, Mustafi SM, Li J, Risacher SL, Tallman E, Brown SA, West JD, Harezlak J, Farlow MR, Unverzagt FW. White matter alterations in early-stage Alzheimer's disease: A tract-specific study. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2019;11:576-87.
13. Luo C, Li M, Qin R, Chen H, Yang D, Huang L, Liu R, Xu Y, Bai F, Zhao H. White matter microstructural damage as an early sign of subjective cognitive decline. Front Aging Neurosci. 2020;11:378.
14. Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junqué C, Solé-Padullés C, Peña-Gómez C, Bargalló N, Molinuevo JL, Bartrés-Faz D. Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging. 2012;33(1):61-74.
15. Wei Y-C, Hsu C-CH, Huang W-Y, Chen Y-L, Lin C, Chen C-K, Lin C, Shyu Y-C, Lin C-P. White matter integrity underlies the physical-cognitive correlations in subjective cognitive decline. Front Aging Neurosci. 2021;13:700764.
16. Lazar M. Working Memory: How Important Is White Matter? Neuroscientist. 2017;23(2):197-210. doi: 10.1177/1073858416634298. PubMed PMID: 30231842.
17. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61(4):1000-16. Epub 20120330. doi: 10.1016/j.neuroimage.2012.03.072. PubMed PMID: 22484410.
18. Fu X, Shrestha S, Sun M, Wu Q, Luo Y, Zhang X, Yin J, Ni H. Microstructural white matter alterations in mild cognitive impairment and Alzheimer’s disease. Clin Neuroradiol. 2020;30(3):569-79.
19. Mustafi SM, Gandhi PK, Risacher SL, West JD, Tallman EF, O'Neill DP, Farlow MR, Unverzagt FW, Apostolova LG, Saykin AJ. IC‐P‐175: Hybrid Diffusion Imaging (HYDI) of White Matter Changes in Older Adults With Subjective Cognitive Decline (SCD): Assessment of Orientation Dispersion and Axonal Density. Alzheimer's & Dementia. 2016;12:P127-P9.
20. Viviano RP, Hayes JM, Pruitt PJ, Fernandez ZJ, van Rooden S, van der Grond J, Rombouts SA, Damoiseaux JS. Aberrant memory system connectivity and working memory performance in subjective cognitive decline. NeuroImage. 2019;185:556-64.
21. Wechsler D. Wechsler Memory Scale Third UK E. London: Harcourt Assessment; 1999.
22. Shafto MA, Tyler LK, Dixon M, Taylor JR, Rowe JB, Cusack R, Calder AJ, Marslen-Wilson WD, Duncan J, Dalgleish T. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 2014;14(1):1-25.
23. Taylor JR, Williams N, Cusack R, Auer T, Shafto MA, Dixon M, Tyler LK, Cam C, Henson RN. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. NeuroImage. 2017;144(Pt B):262-9. Epub 20150912. doi: 10.1016/j.neuroimage.2015.09.018. PubMed PMID: 26375206; PMCID: PMC5182075.
24. Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. NeuroImage. 2016;142:394-406. Epub 20160811. doi: 10.1016/j.neuroimage.2016.08.016. PubMed PMID: 27523449; PMCID: PMC5159209.
25. Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn Reson Med. 2016;76(5):1582-93.
26. Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal JV. Complex diffusion-weighted image estimation via matrix recovery under general noise models. NeuroImage. 2019;200:391-404.
27. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs‐ringing artifact removal based on local subvoxel‐shifts. Magn Reson Med. 2016;76(5):1574-81.
28. Bautista T, O’Muircheartaigh J, Hajnal JV, Tournier J-D, editors. Removal of Gibbs ringing artefacts for 3D acquisitions using subvoxel shifts. Proceedings of the International Society for Magnetic Resonance in Medicine; 2021.
29. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825-41.
30. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62(2):782-90.
31. Daducci A, Canales-Rodriguez EJ, Zhang H, Dyrby TB, Alexander DC, Thiran JP. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. NeuroImage. 2015;105:32-44. Epub 20141022. doi: 10.1016/j.neuroimage.2014.10.026. PubMed PMID: 25462697.
32. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31(4):1487-505.
33. Mori S, Wakana S, Van Zijl PC, Nagae-Poetscher L. MRI atlas of human white matter: Elsevier; 2005.
34. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44(1):83-98.
35. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381-97.
36. Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res. 2016;173(3):200-12.
37. Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimer's & Dementia. 2016;12(6):719-32. doi: https://doi.org/10.1016/j.jalz.2016.02.010.