There is renewed interest in MRI at low field because of cost, portability, and safety benefits. Functional MRI benefits from high field strength since intrinsic SNR and susceptibility contrast increase with B0. However, physiological noise limits detection sensitivity at moderate resolution. Furthermore, low-field MR benefits from increased T2* and decreased T1. Finally, high field uniformity at low field is essential for transition-band balanced SSFP, an alternative to EPI for BOLD imaging at low field. Preliminary investigation shows that, when accounting for imaging-gradient concomitant field effects, both SSFP and EPI can be readily performed at 0.55 T, EPI showing highest performance.
[1] Marques JP, Simonis FFJ, Webb AG. Low-field MRI: An MR physics perspective. J Magn Reson Imaging 2019;49(6):1528-42.
[2] Geethanath S, Vaughan JT, Jr. Accessible magnetic resonance imaging: A review. J Magn Reson Imaging 2019;49(7):e65-e77.
[3] Wald LL, McDaniel PC, Witzel T, Stockmann JP, Cooley CZ. Low-cost and portable MRI. J Magn Reson Imaging 2020;52(3):686-96.
[4] Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, et al. Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI. Radiology 2019;293(2):384-93.
[5] Gati JS, Menon RS, Ugurbil K, Rutt BK. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 1997;38(2):296-302.
[6] Uludag K, Muller-Bierl B, Ugurbil K. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 2009;48(1):150-65.
[7] Duyn JH. The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage 2012;62(2):1241-8.
[8] Guerin B, Villena JF, Polimeridis AG, Adalsteinsson E, Daniel L, White JK, et al. The ultimate signal-to-noise ratio in realistic body models. Magn Reson Med 2017;78(5):1969-80.
[9] Duyn J, Koretsky AP. Magnetic resonance imaging of neural circuits. Nat Clin Pract Cardiovasc Med 2008;5 Suppl 2:S71-8.
[10] Polimeni JR, Fischl B, Greve DN, Wald LL. Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 2010;52(4):1334-46.
[11] Dumoulin SO, Fracasso A, van der Zwaag W, Siero JCW, Petridou N. Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function. Neuroimage 2018;168:345-57.
[12] Kruger G, Glover GH. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001;46(4):631-7.
[13] Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, et al. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 2005;26(1):243-50.
[14] Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995;34(1):65-73.
[15] Robson MD, Gore JC, Constable RT. Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 1997;38(5):733-40.
[16] Jezzard P. Correction of geometric distortion in fMRI data. Neuroimage 2012;62(2):648-51.
[17] Santosh CG, Rimmington JE, Best JJ. Functional magnetic resonance imaging at 1 T: motor cortex, supplementary motor area and visual cortex activation. Br J Radiol 1995;68(808):369-74.
[18] Gering DT, Weber DM. Intraoperative, real-time, functional MRI. J Magn Reson Imaging 1998;8(1):254-7.
[19] Jones AP, Hughes DG, Brettle DS, Robinson L, Sykes JR, Aziz Q, et al. Experiences with functional magnetic resonance imaging at 1 tesla. Br J Radiol 1998;71(842):160-6.
[20] van der Kallen BF, van Erning LJ, van Zuijlen MW, Merx H, Thijssen HO. Activation of the sensorimotor cortex at 1.0 T: comparison of echo-planar and gradient-echo imaging. AJNR Am J Neuroradiol 1998;19(6):1099-104.
[21] Schulder M, Azmi H, Biswal B. Functional magnetic resonance imaging in a low-field intraoperative scanner. Stereotact Funct Neurosurg 2003;80(1-4):125-31.
[22] Boghi A, Rampado O, Bergui M, Avidano F, Manzone C, Coriasco M, et al. Functional MR study of a motor task and the tower of London task at 1.0 T. Neuroradiology 2006;48(10):763-71.
[23] Lundervold A, Ersland L, Gjesdal KI, Smievoll AI, Tillung T, Sundberg H, et al. Functional magnetic resonance imaging of primary visual processing using a 1.0 Tesla scanner. Int J Neurosci 1995;81(3-4):151-68.
[24] Carr HY. Steady-state free precession in nuclear magnetic resonance. Phys Rev 1958;112(5):1693-701.
[25] Scheffler K, Hennig J. Is TrueFISP a gradient-echo or a spin-echo sequence? Magn Reson Med 2003;49(2):395-7.
[26] Markl M, Alley MT, Elkins CJ, Pelc NJ. Flow effects in balanced steady state free precession imaging. Magn Reson Med 2003;50(5):892-903.
[27] Lee J, Fukunaga M, Duyn JH. Improving contrast to noise ratio of resonance frequency contrast images (phase images) using balanced steady-state free precession. Neuroimage 2011;54(4):2779-88.
[28] Scheffler K, Seifritz E, Bilecen D, Venkatesan R, Hennig J, Deimling M, et al. Detection of BOLD changes by means of a frequency-sensitive trueFISP technique: preliminary results. NMR Biomed 2001;14(7-8):490-6.
[29] Miller KL, Hargreaves BA, Lee J, Ress D, deCharms RC, Pauly JM. Functional brain imaging using a blood oxygenation sensitive steady state. Magn Reson Med 2003;50(4):675-83.
[30] Miller KL, Smith SM, Jezzard P, Pauly JM. High-resolution FMRI at 1.5T using balanced SSFP. Magn Reson Med 2006;55(1):161-70.
[31] Lee J, Shahram M, Schwartzman A, Pauly JM. Complex data analysis in high-resolution SSFP fMRI. Magn Reson Med 2007;57(5):905-17.
[32] Sun K, Xue R, Zhang P, Zuo Z, Chen Z, Wang B, et al. Integrated SSFP for functional brain mapping at 7T with reduced susceptibility artifact. J Magn Reson 2017;276:22-30.
[33] Miller KL. FMRI using balanced steady-state free precession (SSFP). Neuroimage 2012;62(2):713-9.
[34] Norris DG, Hutchison JM. Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths. Magn Reson Imaging 1990;8(1):33-7.
[35] Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, et al. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 1998;39(2):300-8.
[36] Wang Y, van Gelderen P, de Zwart JA, Campbell-Washburn AE, Duyn JH. FMRI based on transition-band balanced SSFP in comparison with EPI on a high-performance 0.55 T scanner. Magn Reson Med 2021;85(6):3196-210.