Deep learning (DL) techniques have emerged as a powerful reconstruction approach for high-quality accelerated MRI. Among these, physics-based DL reconstruction approaches, which incorporate the MRI encoding operator to solve a regularized least squares problem, have gained interest due to its improved generalization abilities. Our purpose is to look at physics-based DL methods in the context of CMR reconstruction.
1. Lustig M, Donoho DL, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58(6):1182-1195.
2. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 2007;57(6):1086-1098.
3. Liang D, Cheng J, Ke Z, Ying L. Deep MRI Reconstruction: Unrolled Optimization Algorithms Meet Neural Networks. arXiv preprint arXiv:1907.11711; 2019.
4. Knoll F, Hammernik K, Zhang C, Moeller S, Pock T, Sodickson DK, Akcakaya M. Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues. IEEE Signal Processing Magazine; 2020. p 128-140.
5. Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D, Liang D. Accelerating magnetic resonance imaging via deep learning. IEEE 13th International Symposium on Biomedical Imaging (ISBI); 2016. p 514-517.
6. Lee D, Yoo J, Tak S, Ye JC. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. IEEE Trans Biomed Eng 2018;65(9):1985-1995.
7. Akcakaya M, Moeller S, Weingartner S, Ugurbil K. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging. Magn Reson Med 2019;81(1):439-453.
8. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 2018;79(6):3055-3071.
9. Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med Imaging 2018;37(2):491-503.
10. Aggarwal HK, Mani MP, Jacob M. MoDL: Model-Based Deep Learning Architecture for Inverse Problems. IEEE Trans Med Imaging 2019;38(2):394-405.
11. Akcakaya M, Yaman B, Chung H, Ye JC. Unsupervised Deep Learning Methods for Biological Image Reconstruction. IEEE Signal Processing Magazine 2022.
12. Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar J, Rabbat M, Defazio A, Muckley MJ, Sodickson DK, Zitnick CL, Recht MP. Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn Reson Med 2020;84(6):3054-3070.
13. Fan LXZ, Shen DM, Haji-Valizadeh H, Naresh NK, Carr JC, Freed BH, Lee DC, Kim D. Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net. NMR in Biomedicine 2020;33(5).
14. Wang JY, Weller DS, Kramer CM, Salerno M. DEep learning-based rapid Spiral Image REconstruction (DESIRE) for high-resolution spiral first-pass myocardial perfusion imaging. NMR in Biomedicine.
15. Kellman, M., Zhang, K., Markley, E., Tamir, J., Bostan, E., Lustig, M. & Waller, L. Memory-Efficient Learning for Large-Scale Computational Imaging. IEEE Transactions on Computational Imaging 2020; 6:1403-1414.
16. Qin, C., Schlemper, J., Caballero, J., Price, A. N., Hajnal, J. V. & Rueckert, D. Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med Imaging 2019; 38:280-290.
17. Fuin N, Bustin A, Küstner T, Oksuz I, Clough J, King AP, Schnabel JA, Botnar RM, Prieto C. A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography. Magn Reson Imaging 2020 Jul;70:155-167.
18. Küstner T, Fuin N, Hammernik K, Bustin A, Qi H, Hajhosseiny R, Masci PG, Neji R, Rueckert D, Botnar RM, Prieto C. CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci Rep 2020 Aug 13;10(1):13710.
19. Malavé MO, Baron CA, Koundinyan SP, Sandino CM, Ong F, Cheng JY, Nishimura DG. Reconstruction of undersampled 3D non-Cartesian image-based navigators for coronary MRA using an unrolled deep learning model. Magn Reson Med 2020 Aug;84(2):800-812.
20. Zhang C, Piccini D, Demirel OB, Bonanno G, Yaman B, Stuber M, Moeller S, Akcakaya M. Distributed Memory-Efficient Physics-Guided Deep Learning Reconstruction for Large-Scale 3D Non-Cartesian MRI. Proc IEEE ISBI 2022.
21. Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn Reson Med 2020 Dec;84(6):3172-3191.
22. Yaman B, Shenoy C, Deng Z, Moeller S, El-Rewaidy H, Nezafat R, Akcakaya M. Self-supervised physics-guided deep learning reconstruction for high-resolution 3D LGE CMR. Proc IEEE ISBI 2021:100-104.