As any other MRI modality, diffusion MRI can be corrupted by artifacts. In this lecture, we will introduce the common artifacts that compromise diffusion MRI, discuss how these can affect different diffusion MRI estimates, and which state-of-the-art pre-processing strategies can be used to minimize their effects.
1 Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 1997, 16: 187– 198.
2 Jenkinson M, Smith SA. global optimisation method for robust affine registration of brain images. Med Image Anal 2001 5 (2), 143–156. doi: 10.1016/s1361-8415(01)00036-6
3 Leemans A, Jones DK. The b-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 2009, 61 (6), 1336–1349. doi: 10.1002/mrm.21890
4 Ben-Amitay S, Jones DK, Assaf Y. Motion correction and registration of high b-value diffusion weighted images. Magn Reson Med 2012, 67 (6), 1694–1702. doi: 10.1002/mrm.23186
5 Nilsson M, Szczepankiewicz F, van Westen D, Hansson O. Extrapolation-based references improve motion and eddy-Current correction of high B-Value DWI data: application in Parkinson’s disease dementia. PLoS ONE 2015, 10 (11), e0141825. doi: 10.1371/journal.pone.0141825
6 Andersson JL, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016, 125, 1063–1078. doi: 10.1016/j.neuroimage.2015.10.019
7 Henriques RN, CamCAN, Correia MM. Reducing inter and intravolume instabilities on diffusion-weighted data for ageing studies. Proceedings of 22nd Annual Meeting of the OHBM 2016, Geneva, Switzerland
8 Alhamud A, Tisdall MD, Hess AT, Hasan KM, Meintjes EM, van der Kouwe AJ. Volumetric navigators for real-time motion correction in diffusion tensor imaging. Magn Reson Med 2012, 68 (4), 1097–1108. doi: 10.1002/mrm.23314
9 Zaitsev M, Dold C, Sakas G, Hennig J, Speck O. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 2006, 31 (3), 1038–1050. doi: 10.1016/J.NEUROIMAGE.2006.01.039
10 Tournier JD, Mori S, Leemans A. Diffusion Tensor Imaging and Beyond. Magn. Reson. Med. 2011, 65(6): 1532–1556. doi:10.1002/mrm.22924
11 Chang L-C, Walker L, Pierpaoli C. RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts. Magn Reson Med 2012, 68(5), 1654–1663. doi: 10.1002/mrm.24173
12 Tax CM, Otte WM, Viergever MA, Dijkhuizen RM, Leemans A. REKINDLE: Robust extraction of kurtosis INDices with linear estimation. Magn Reson Med 2015, 73 (2), 794–808. doi: 10.1002/mrm.25165
13 Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995, 34, 65–73
14 Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage 2012, 61(1):275-88. doi: 10.1016/j.neuroimage.2012.02.054.
15 (61), 275–288.15 Tao R, Fletcher PT, Gerber S, Whitaker RT. A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffu- sion weighted and structural MRI. Information Processing in Medical Imaging 2009, 21, 651–663
16 Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 2003, 20(2):870-888
17 Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998, 39(5), 801–812. doi: 10.1002/mrm.1910390518
18 Aja-Fernández S, Tristán-Vega A. Influence of Noise Correlation in Multiple-Coil Statistical Models With Sum of Squares Reconstruction. Magn Reson Med 2012, 67(2), 580-585. doi: 10.1002/mrm.23020
19 Aja-Fernández S, Tristán-Vega A, Hoge WS. Statistical noise analysis in grappa using a parametrized non-central chi approximation model. Magn Reson Med 2011, 65(4), 1195–1206. doi: 10.1002/mrm.22701
20 Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 1996, 36(6), 893-906. doi:10.1016/j.cam.2007.10.012
21 Jones DK, Basser PJ. “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion-weighted MR data. Magn. Reson. Med. 2004, 52(5), 979–993. doi:10.1002/mrm.20283
22 Henriques RN, Jespersen SN, Jones D, Veraart J. Towards more robust and reproducible Diffusion Kurtosis Imaging. Magn. Reson. Med. 2021, 86(3):1600-1613. doi: 10.1002/mrm.28730
23 Jones DK, Cercigani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010, 23:803–820 doi: 10.1002/NBM.1543
24 Jones DK, Symms MR, Cercignani M, Howard RJ. The effect of filter size on VBM analyses of DT-MRI data. Neuroimage 2005, 26:546–554 doi: 10.1016/J.NEUROIMAGE.2005.02.013
25 Gerig G, Kbler O, Kikinis R, Jolesz FA. Nonlinear Anisotropic Filtering of MRI Data. IEEE Trans. Med. Imaging 1992;11:221–232 doi: 10.1109/42.141646
26 Nowak RD. Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans. Image Process. 1999, 8:1408–1419 doi: 10.1109/83.791966
27 Pižurica A, Philips W, Lemahieu I, Acheroy M. A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans. Med. Imaging 2003;22:323–331 doi: 10.1109/TMI.2003.809588
28 Knoll F, Bredies K, Pock T, Stollberger R. Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 2011;65:480–491 doi: 10.1002/MRM.22595
29 Coupé P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 2008;27:425 doi: 10.1109/TMI.2007.906087
30 Manjón JV, Coupé P, Concha L, Buades A, Collins DL, Robles M. Diffusion Weighted Image Denoising Using Overcomplete Local PCA Gong G, editor. PLoS One 2013, 8, e73021 doi: 10.1371/journal.pone.0073021
31 Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage 2016;142:394–406 doi: 10.1016/j.neuroimage.2016.08.016
32 Bazin P-L, Alkemade A, van der Zwaag W, Caan M, Mulder M, Forstmann BU. Denoising High-Field Multi-Dimensional MRI With Local Complex PCA. Front. Neurosci. 2019;0:1066 doi: 10.3389/FNINS.2019.01066
33 Henriques RN, Jespersen SN, Shemesh N. Hybrid PCA denoising - Improving PCA denoising in the presence of spatial correlations. Proceedings of Joint Annual Meeting ISMRM-ESMRMB 2022, London, UK
34 Muckley MJ, Ades-Aron B, Papaioannou A, Lemberskiy G, Solomon E Lui YW, Sodickson DK, Fieremans E, Novikov DS, Knoll F. Training a neural network for gibbs and noise removal in diffusion mri. Magn Reson Med 2021, 85 (1), 413–428 .
35 Fadnavis S, Batson J, Garyfallidis, E. “Patch2self: Denoising diffusion mri with self-supervised learning,” in Advances in Neural Information Processing Systems 2020, 33, 16293–16303
36 Veraart J, Van Hecke W, Sijbers J. Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a rician noise model. Magn Reson Med 2011, 66 (3), 678–686.
37 Jbabdi S, Sotiropoulos SN, Savio AM, Graña M, Behrens TEJ. Model-based analysis of multishell diffusion mr data for tractography: how to get over fitting problems. Magn Reson Med 2012, 68 (6), 1846–1855. doi: 10.1002/mrm.24204.
38 Koay CG, Basser PJ. Analytically exact correction scheme for signal extraction fromnoisy magnitude MR signals. J Magn Reson 2006, 179, 317–322. doi: 10.1016/j.jmr.2006.01.016
39 Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal JV. Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage 2019, 200, 391–404
40 Gibbs JW. Fourier’S series. Nature 1898, 59 (1522), 200–200.
41 Perrone D, Aelterman J, Pižurica A, Jeurissen B., Philips W, Leemans A. The effect of gibbs ringing artifacts on measures derived from diffusion MRI. Neuroimage 2015, 120, 441–455. doi: 10.1016/j.neuroimage.2015.06.068
42 Veraart J, Fieremans E, Jelescu IO, Knoll F, Novikov DS. Gibbs ringing in diffusion mri. Magn Reson Med 2016, 76 (1), 301–314
43 Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact re- moval based on local subvoxel-shifts. Magn Reson Med 2016, 76 (5), 1574–1581. doi: 10.1002/mrm.26054
44 Zhang Q, Ruan G, Yang W, Liu Y, Zhao K, Feng Q, Chen W, Wu EX, Feng Y. MRI gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Magn Reson Med 2019, 82 (6), 2133–2145
45 Lee H-H, Novilov DS, Fieremans E. Removal of partial Fourier-indiced Gibbs (RPG) ringing artifacts in MRI. Magn Reson Med 2021, 86(5), 2733-2750. doi: 10.1002/mrm.28830.
46 Vos SB, Tax CM, Luijten PR, Ourselin S, Leemans A, Froeling M. The importance of correcting for signal drift in diffusion MRI. Magn Reson Med 2017, 77 (1), 285–299 .
47 Hansen CB, Nath V, Hainline AE, Schilling KG, Parvathaneni P, Bayrak RG, Blaber JA, Irfanoglu O, Pierpaoli C, Anderson AW et al. Characterization and correlation of signal drift in diffusion weighted MRI. Magn Reson Imaging 2019, 57, 133–142 .