Microstructure-informed tractography is a relatively new area of research that aims at combining tractography with tissue microstructural information in the pursuit of more quantitative and biologically oriented estimation of brain connectivity. This lecture introduces key concepts and motivations behind microstructure informed tractography and motivates why they are relevant in the context of quantifying structural connectivity. Following this lecture, researchers and clinicians who are interested in structural connectivity will learn how to build more veridical and quantitative connectomes using diffusion MRI and multimodal acquisitions.
1. Smith R, Raffelt D, Tournier J-D, Connelly A. Quantitative streamlines tractography: methods and inter-subject normalisation. July 2020. doi:10.31219/osf.io/c67kn
2. Maier-Hein KH, Neher PF, Houde J-C, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. 2017;8(1):1349.
3. Thomas C, Ye FQ, Okan Irfanoglu M, et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci. 2014. doi:10.1073/pnas.1405672111
4. Daducci A, Palú AD, Descoteaux M, Thiran JP. Microstructure informed tractography: Pitfalls and open challenges. Front Neurosci. 2016. doi:10.3389/fnins.2016.00247
5. Jones DK. Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med. 2010. doi:10.2217/iim.10.21
6. Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage. 2013. doi:10.1016/j.neuroimage.2012.06.081
7. Kreher BW, Mader I, Kiselev VG. Gibbs tracking: A novel approach for the reconstruction of neuronal pathways. Magn Reson Med. 2008. doi:10.1002/mrm.21749
8. Fillard P, Poupon C, Mangin J-F. A novel global tractography algorithm based on an adaptive spin glass model. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):927-934. doi:10.1007/978-3-642-04268-3_114
9. Reisert M, Mader I, Anastasopoulos C, Weigel M, Schnell S, Kiselev V. Global fiber reconstruction becomes practical. Neuroimage. 2011. doi:10.1016/j.neuroimage.2010.09.016
10. Reisert M, Kiselev VG, Dihtal B, Kellner E, Novikov DS. MesoFT: Unifying diffusion modelling and fiber tracking. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). ; 2014. doi:10.1007/978-3-319-10443-0_26
11. Christiaens D, Reisert M, Dhollander T, Sunaert S, Suetens P, Maes F. Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model. Neuroimage. 2015. doi:10.1016/j.neuroimage.2015.08.008
12. Sherbondy AJ, Dougherty RF, Ananthanarayanan R, Modha DS, Wandell BA. Think Global, Act Local; Projectome Estimation with BlueMatter. In: Yang G-Z, Hawkes D, Rueckert D, Noble A, Taylor C, eds. Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2009. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009:861-868.
13. Sherbondy AJ, Rowe MC, Alexander DC. MicroTrack: An Algorithm for Concurrent Projectome and Microstructure Estimation. In: Medical Image Computing and Computer-Assisted Intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. Vol 13. ; 2010:183-190. doi:10.1007/978-3-642-15705-9_23
14. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage. 2013. doi:10.1016/j.neuroimage.2012.11.049
15. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage. 2015. doi:10.1016/j.neuroimage.2015.06.092
16. Daducci A, Dal Palu A, Lemkaddem A, Thiran JP. A convex optimization framework for global tractography. In: Proceedings - International Symposium on Biomedical Imaging. ; 2013. doi:10.1109/ISBI.2013.6556527
17. Daducci A, Dal Palù A, Lemkaddem A, Thiran JP. COMMIT: Convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging. 2015. doi:10.1109/TMI.2014.2352414
18. Pestilli F, Yeatman JD, Rokem A, Kay KN, Wandell BA. Evaluation and statistical inference for human connectomes. Nat Methods. 2014. doi:10.1038/nmeth.3098
19. Schiavi S, Ocampo-Pineda M, Barakovic M, et al. A new method for accurate in vivo mapping of human brain connections using microstructural and anatomical information. Sci Adv. 2020. doi:10.1126/sciadv.aba8245
20. Ocampo-Pineda M, Schiavi S, Rheault F, et al. Hierarchical Microstructure Informed Tractography. Brain Connect. 2021. doi:10.1089/brain.2020.0907
21. Barakovic M, Girard G, Schiavi S, et al. Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. Front Neurosci. 2021;15:687. doi:10.3389/fnins.2021.646034
22. Schiavi S, Lu P-J, Weigel M, et al. Bundle myelin fraction (BMF) mapping of different white matter connections using microstructure informed tractography. Neuroimage. 2022;249:118922. doi:https://doi.org/10.1016/j.neuroimage.2022.118922
23. Barakovic M, Tax CMW, Rudrapatna U, et al. Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation. Neuroimage. 2021;227:117617. doi:https://doi.org/10.1016/j.neuroimage.2020.117617