This lecture will cover the concepts and principles of magnetic susceptibility as a contrast mechanism in MRI. We will discuss the principles of magnetic susceptibility and its sources in biological tissues. MRI acquisition sequences and methods for generating susceptibility-based contrasts including susceptibility-weighted imaging, quantitative susceptibility mapping, and susceptibility tensor imaging will be discussed. We will explore some recent applications of magnetic susceptibility in MRI for probing various aspects of tissue composition as well as white matter microstructure in the brain.
1. Schenck, J.F., The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys, 1996. 23(6): p. 815-50.
2. Wang, Y. and T. Liu, Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med, 2015. 73(1): p. 82-101.
3. Duyn, J.H. and J. Schenck, Contributions to magnetic susceptibility of brain tissue. NMR in biomedicine, 2017. 30(4): p. 10.1002/nbm.3546.
4. Haacke, E.M., S. Liu, S. Buch, W. Zheng, D. Wu, and Y. Ye, Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging, 2015. 33(1): p. 1-25.
5. He, X. and D.A. Yablonskiy, Biophysical mechanisms of phase contrast in gradient echo MRI. Proceedings of the National Academy of Sciences, 2009. 106(32): p. 13558-13563.
6. Haacke, E.M., Y. Xu, Y.C. Cheng, and J.R. Reichenbach, Susceptibility weighted imaging (SWI). Magn Reson Med, 2004. 52(3): p. 612-8.
7. Liu, C., H. Wei, N.J. Gong, M. Cronin, R. Dibb, and K. Decker, Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications. Tomography, 2015. 1(1): p. 3-17.
8. Langkammer, C., F. Schweser, K. Shmueli, C. Kames, X. Li, L. Guo, C. Milovic, J. Kim, H. Wei, K. Bredies, S. Buch, Y. Guo, Z. Liu, J. Meineke, A. Rauscher, J.P. Marques, and B. Bilgic, Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge. Magnetic Resonance in Medicine, 2018. 79(3): p. 1661-1673.
9. Shmueli, K., J.A. de Zwart, P. van Gelderen, T.-Q. Li, S.J. Dodd, and J.H. Duyn, Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magnetic Resonance in Medicine, 2009. 62(6): p. 1510-1522.
10. Liu, C., W. Li, K.A. Tong, K.W. Yeom, and S. Kuzminski, Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging, 2015. 42(1): p. 23-41.
11. Lee, J., Y. Nam, J.Y. Choi, E.Y. Kim, S.-H. Oh, and D.-H. Kim, Mechanisms of T2* anisotropy and gradient echo myelin water imaging. NMR in Biomedicine, 2017. 30(4): p. e3513.
12. Lee, J., K. Shmueli, M. Fukunaga, P. van Gelderen, H. Merkle, A.C. Silva, and J.H. Duyn, Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. Proc Natl Acad Sci U S A, 2010. 107(11): p. 5130-5.
13. Liu, C., Susceptibility tensor imaging. Magn Reson Med, 2010. 63(6): p. 1471-7.
14. Yablonskiy, D.A. and A.L. Sukstanskii, Generalized Lorentzian Tensor Approach (GLTA) as a biophysical background for quantitative susceptibility mapping. Magn Reson Med, 2015. 73(2): p. 757-64.
15. Li, W., C. Liu, T.Q. Duong, P.C. van Zijl, and X. Li, Susceptibility tensor imaging (STI) of the brain. NMR Biomed, 2017. 30(4).
16. Wharton, S. and R. Bowtell, Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A, 2012. 109(45): p. 18559-64.
17. Schweser, F., A. Deistung, D. Güllmar, M. Atterbury, B. Lehr, K. Sommer, and J. Reichenbach. Non-linear evolution of GRE phase as a means to investigate tissue microstructure. in Proceedings of the 19th Meeting of the International Society for Magnetic Resonance in Medicine. 2011.
18. Aggarwal, M., Y. Kageyama, X. Li, and P.C. van Zijl, B0 -orientation dependent magnetic susceptibility-induced white matter contrast in the human brainstem at 11.7T. Magn Reson Med, 2016. 75(6): p. 2455-63.
19. Tendler, B.C. and R. Bowtell, Frequency difference mapping applied to the corpus callosum at 7T. Magn Reson Med, 2019. 81(5): p. 3017-3031.
20. Duyn, J.H., Studying brain microstructure with magnetic susceptibility contrast at high-field. Neuroimage, 2018. 168: p. 152-161.
21. Bilgic, B., A. Pfefferbaum, T. Rohlfing, E.V. Sullivan, and E. Adalsteinsson, MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage, 2012. 59(3): p. 2625-35.
22. Langkammer, C., N. Krebs, W. Goessler, E. Scheurer, F. Ebner, K. Yen, F. Fazekas, and S. Ropele, Quantitative MR imaging of brain iron: a postmortem validation study. Radiology, 2010. 257(2): p. 455-62.
23. Schweser, F., A. Deistung, B.W. Lehr, and J.R. Reichenbach, Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Medical Physics, 2010. 37(10): p. 5165-5178.
24. Aggarwal, M., X. Li, O. Gröhn, and A. Sierra, Nuclei-specific deposits of iron and calcium in the rat thalamus after status epilepticus revealed with quantitative susceptibility mapping (QSM). J Magn Reson Imaging, 2018. 47(2): p. 554-564.
25. Li, W., B. Wu, A. Batrachenko, V. Bancroft-Wu, R.A. Morey, V. Shashi, C. Langkammer, M.D. De Bellis, S. Ropele, A.W. Song, and C. Liu, Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Hum Brain Mapp, 2014. 35(6): p. 2698-713.