In order to institute quantitative cartilage MRI in clinical practice a number of requirements need to be met. First of all, it is essential to define the exact clinical indications for quantitative imaging and how they would impact patient care. Second, image acquisition and analysis need to be standardized and meet clearly defined claims including reproducibility. Finally, sequences need to be approved by regulatory agencies and be available as a product from manufacturers. In this presentation we will discuss these different steps.
References:
1. Link TM, Neumann J, Li X. Prestructural cartilage assessment using MRI. J Magn Reson Imaging. 2017;45(4):949-65. doi: 10.1002/jmri.25554. PubMed PMID: 28019053.
2. Luke AC, Stehling C, Stahl R, Li X, Kay T, Takamoto S, et al. High-field magnetic resonance imaging assessment of articular cartilage before and after marathon running: does long-distance running lead to cartilage damage? Am J Sports Med. 2010;38(11):2273-80. Epub 2010/07/16. doi: 0363546510372799 [pii] 10.1177/0363546510372799. PubMed PMID: 20631252.
3. Razmjoo A, Caliva F, Lee J, Liu F, Joseph GB, Link TM, et al. T2 analysis of the entire osteoarthritis initiative dataset. J Orthop Res. 2020. Epub 2020/07/22. doi: 10.1002/jor.24811. PubMed PMID: 32691905.
4. Chalian M, Li X, Guermazi A, Obuchowski NA, Carrino JA, Oei EH, et al. The QIBA Profile for MRI-based Compositional Imaging of Knee Cartilage. Radiology. 2021;301(2):423-32. Epub 2021/09/08. doi: 10.1148/radiol.2021204587. PubMed PMID: 34491127; PubMed Central PMCID: PMCPMC8574057.
5. Bolbos RI, Link TM, Ma CB, Majumdar S, Li X. T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. Osteoarthritis Cartilage. 2009;17(1):12-8. Epub 2008/07/08. doi: S1063-4584(08)00176-3 [pii] 10.1016/j.joca.2008.05.016. PubMed PMID: 18602280.
6. Russell C, Pedoia V, Amano K, Potter H, Majumdar S, Consortium A-A. Baseline cartilage quality is associated with voxel-based T1rho and T2 following ACL reconstruction: A multicenter pilot study. J Orthop Res. 2016. doi: 10.1002/jor.23277. PubMed PMID: 27138363.
7. Su F, Pedoia V, Teng HL, Kretzschmar M, Lau BC, McCulloch CE, et al. The association between MR T1rho and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction. Osteoarthritis Cartilage. 2016;24(7):1180-9. doi: 10.1016/j.joca.2016.01.985. PubMed PMID: 26850823; PubMed Central PMCID: PMC4907855.
8. Gersing AS, Schwaiger BJ, Nevitt MC, Zarnowski J, Joseph GB, Feuerriegel G, et al. Weight loss regimen in obese and overweight individuals is associated with reduced cartilage degeneration: 96-month data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2019;27(6):863-70. Epub 2019/03/03. doi: 10.1016/j.joca.2019.01.018. PubMed PMID: 30825611.
9. Gersing AS, Solka M, Joseph GB, Schwaiger BJ, Heilmeier U, Feuerriegel G, et al. Progression of cartilage degeneration and clinical symptoms in obese and overweight individuals is dependent on the amount of weight loss: 48-month data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2016;24(7):1126-34. doi: 10.1016/j.joca.2016.01.984. PubMed PMID: 26828356; PubMed Central PMCID: PMC4907808.
10. Lin W, Alizai H, Joseph GB, Srikhum W, Nevitt MC, Lynch JA, et al. Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2013;21(10):1558-66. doi: 10.1016/j.joca.2013.06.022. PubMed PMID: 23831632; PubMed Central PMCID: PMC3874212.
11. Ikuta F, Takahashi K, Kiuchi S, Watanabe A, Okuaki T, Oshima Y, et al. Effects of repeated intra-articular hyaluronic acid on cartilage degeneration evaluated by T1rho mapping in knee osteoarthritis. Mod Rheumatol. 2021;31(4):912-8. Epub 2020/09/30. doi: 10.1080/14397595.2020.1830483. PubMed PMID: 32990487.
12. Welsch GH, Mamisch TC, Marlovits S, Glaser C, Friedrich K, Hennig FF, et al. Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res. 2009;27(7):957-63. Epub 2009/01/13. doi: 10.1002/jor.20835. PubMed PMID: 19133648.
13. Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthritis Cartilage. 2009;17(9):1219-27. doi: 10.1016/j.joca.2009.03.018. PubMed PMID: 19409295.
14. Lisee C, Spang JT, Loeser R, Longobardi L, Lalush D, Nissman D, et al. Tibiofemoral articular cartilage composition differs based on serum biochemical profiles following anterior cruciate ligament reconstruction. Osteoarthritis Cartilage. 2021;29(12):1732-40. Epub 2021/09/19. doi: 10.1016/j.joca.2021.09.005. PubMed PMID: 34536530.
15. Joseph GB, McCulloch CE, Nevitt MC, Neumann J, Gersing AS, Kretzschmar M, et al. Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: Data from the osteoarthritis initiative. J Magn Reson Imaging. 2018;47(6):1517-26. Epub 2017/11/17. doi: 10.1002/jmri.25892. PubMed PMID: 29143404; PubMed Central PMCID: PMCPMC5955763.