We propose a dimensionality reduction method, based on the bundle-based minimum distance metric and the UMAP technique, to disentangle and visualize clusters in whole-brain tractography. In multishell diffusion MRI data from 141 elderly subjects, 30 tracts were extracted per subject using auto-calibrated RecoBundles in DIPY. A (141x30)x(141x30) bundle distance matrix was calculated and fed into UMAP. Embedding space maps showed that the same bundles were consistently mapped across subjects, making it easier to identify outliers and define clusters for population-based statistical analysis.
[1] Zavaliangos-Petropulu, A., Nir, T.M., Thomopoulos, S.I., Reid, R.I., Bernstein, M.A., Borowski, B., Jack Jr, C.R., Weiner, M.W., Jahanshad, N. and Thompson, P.M., 2019. Diffusion MRI indices and their relation to cognitive impairment in brain aging: the updated multi-protocol approach in ADNI3. Frontiers in Neuroinformatics, 13, p.2.
[2] Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux, M. and Nimmo-Smith, I., “Dipy, a library for the analysis of diffusion MRI data,” Front. Neuroinform. 8, 8 (2014).
[3] Manjón, J. V, Coupé, P., Concha, L., Buades, A., Collins, D. L. and Robles, M., “Diffusion weighted image denoising using overcomplete local PCA,” PLoS One 8(9), e73021 (2013).
[4] Veraart, J., Fieremans, E. and Novikov, D. S., “Diffusion MRI noise mapping using random matrix theory,” Magn. Reson. Med. 76(5), 1582–1593 (2016).
[5] Veraart, J., Novikov, D. S., Christiaens, D., Ades-Aron, B., Sijbers, J. and Fieremans, E., “Denoising of diffusion MRI using random matrix theory,” Neuroimage 142, 394–406 (2016).
[6] Kellner, E., Dhital, B., Kiselev, V. G. and Reisert, M., “Gibbs-ringing artifact removal based on local subvoxel-shifts,” Magn. Reson. Med. 76(5), 1574–1581 (2016).
[7] Andersson, J. L. R. and Sotiropoulos, S. N., “An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging,” Neuroimage 125, 1063–1078 (2016).
[8] Andersson, J. L. R., Graham, M. S., Zsoldos, E. and Sotiropoulos, S. N., “Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images,” Neuroimage 141, 556–572 (2016).
[9] Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N. and Bastiani, M., “Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement,” Neuroimage 152, 450–466 (2017).
[10] Tournier, J.-D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007).
[11] Girard, G., Whittingstall, K., Deriche, R., & Descoteaux, M. Towards quantitative connectivity analysis: reducing tractography biases. NeuroImage, 98, 266-278, 2014.
[12] Garyfallidis, E., Côté, M.A., Rheault, F., Sidhu, J., Hau, J., Petit, L., Fortin, D., Cunanne, S. and Descoteaux, M., 2018. Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage, 170, pp.283-295.
[13] Chandio, B.Q., Risacher, S.L., Pestilli, F., Bullock, D., Yeh, F.C., Koudoro, S., Rokem, A., Harezlak, J. and Garyfallidis, E., 2020. Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Scientific Reports, 10(1), pp.1-18.
[14] Garyfallidis, E., Ocegueda, O., Wassermann, D. and Descoteaux, M., 2015. Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage, 117, pp.124-140.
[15] McInnes, L., Healy, J. and Melville, J., 2018. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
[16] Chandio, B.Q., Chattopadhyay, T., Owens-Walton, C., Villalon Reina, J.E., Nabulsi, L., Thomopoulos, S.I., Garyfallidis, E., and Thompson, P.M., 2021. “FiberNeat: unsupervised streamline clustering and white matter tract filtering in latent space,” bioRxiv 2021. doi: 10.1101/2021.10.26.465991.