The iVASO MRI is a noninvasive approach for quantitative mapping of CBVa in the brain. It was originally developed in the single-slice mode. Recently, CBVa measured by single-slice iVASO has been validated using histological markers of arteriolar blood vessels in a mouse model. Here, we demonstrate an optimized 3D iVASO MRI protocol with a 3D turbo-field-echo (TFE) readout and a whole-brain coverage. It showed consistent CBVa measures when compared to the original single-slice iVASO. In 3D-TFE-iVASO, the imaging slab volume did not show significant effects on the measured CBVa values. CBVa measured with 3D-TFE-iVASO showed reasonable intra-subject reproducibility.
1. Hua J, Qin Q, Donahue MJ, Zhou J, Pekar JJ, van Zijl PC. Inflow-based vascular-space-occupancy (iVASO) MRI. Magn Reson Med. Jul 2011;66(1):40-56.
2. Hua J, Qin Q, Pekar JJ, Zijl PC. Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent. NMR Biomed. May 24 2011;24(10):1313-1325.
3. Hua J, Qin Q, Donahue MJ, Zhou J, Pekar J, van Zijl PCM. Functional MRI Using Arteriolar Cerebral Blood Volume Changes. 2009:12.
4. Hua J, Qin Q, Pekar J, van Zijl PCM. Measuring Absolute Arteriolar Cerebral Blood Volume (CBVa) in Human Brain Gray Matter (GM) without Contrast Agent. 2009:5314.
5. Donahue MJ, MacIntosh BJ, Sideso E, et al. Absolute cerebral blood volume (CBV) quantification without contrast agents using inflow vascular-space-occupancy (iVASO) with dynamic subtraction. 2009:628.
6. Donahue MJ, Sideso E, MacIntosh BJ, Kennedy J, Handa A, Jezzard P. Absolute arterial cerebral blood volume quantification using inflow vascular-space-occupancy with dynamic subtraction magnetic resonance imaging. J Cereb Blood Flow Metab. Jul 2010;30(7):1329-42.
7. Hua J, Liu P, Kim T, et al. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage. Feb 16 2018;doi:10.1016/j.neuroimage.2018.02.027
8. Wu Y, Agarwal S, Jones CK, et al. Measurement of arteriolar blood volume in brain tumors using MRI without exogenous contrast agent administration at 7T. J Magn Reson Imaging. Nov 2016;44(5):1244-1255. doi:10.1002/jmri.25248
9. Hua J, Unschuld PG, Margolis RL, van Zijl PC, Ross CA. Elevated arteriolar cerebral blood volume in prodromal Huntington's disease. Mov Disord. Mar 2014;29(3):396-401. doi:10.1002/mds.25591
10. Liu H, Zhang C, Xu J, et al. Huntingtin silencing delays onset and slows progression of Huntington's disease: a biomarker study. Brain. May 27 2021;doi:10.1093/brain/awab190
11. Hua J, Lee S, Blair NIS, et al. Increased cerebral blood volume in small arterial vessels is a correlate of amyloid-beta-related cognitive decline. Neurobiol Aging. Jan 10 2019;76:181-193. doi:10.1016/j.neurobiolaging.2019.01.001
12. Paez A, Gu C, Rajan S, et al. Differential changes in arteriolar cerebral blood volume between Parkinson’s disease patients with normal and impaired cognition and individuals with mild cognitive impaired (MCI) due to Alzheimer’s disease– an exploratory study. Tomography. 2020;
13. Hua J, Lee S, Blair NIS, et al. Reduced Grey Matter Arteriolar Cerebral Blood Volume in Schizophrenia. 2015:
14. Hua J, Brandt AS, Lee S, et al. Abnormal Grey Matter Arteriolar Cerebral Blood Volume in Schizophrenia Measured With 3D Inflow-Based Vascular-Space-Occupancy MRI at 7T. Schizophrenia bulletin. Aug 18 2016;43:620-632. doi:10.1093/schbul/sbw109
15. Hua J, Jones CK, Qin Q, van Zijl PC. Implementation of vascular-space-occupancy MRI at 7T. Magn Reson Med. Apr 2013;69(4):1003-13. doi:10.1002/mrm.24334
16. Lu H, Donahue MJ, van Zijl PC. Detrimental effects of BOLD signal in arterial spin labeling fMRI at high field strength. Magn Reson Med. Sep 2006;56(3):546-52.
17. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations by Fast Computing Machines. Journal of chemical physics. 1953;21(6):1087-1092. doi:10.1063/1.1699114
18. Hastings WK. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika. 1970;57(1):97-109. doi:10.2307/2334940
19. Woolrich MW, Chiarelli P, Gallichan D, Perthen J, Liu TT. Bayesian inference of hemodynamic changes in functional arterial spin labeling data. Magn Reson Med. Oct 2006;56(4):891-906. doi:10.1002/mrm.21039
20. Harms RL, Roebroeck A. Robust and Fast Markov Chain Monte Carlo Sampling of Diffusion MRI Microstructure Models. Front Neuroinform. 2018;12:97. doi:10.3389/fninf.2018.00097
21. Behrens TE, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. Nov 2003;50(5):1077-88.
22. Jbabdi S, Sotiropoulos SN, Savio AM, Graña M, Behrens TE. Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn Reson Med. Dec 2012;68(6):1846-55. doi:10.1002/mrm.24204
23. Tang X, Oishi K, Faria AV, et al. Bayesian Parameter Estimation and Segmentation in the Multi-Atlas Random Orbit Model. PLoS One. 2013;8(6):e65591. doi:10.1371/journal.pone.0065591
24. Wang H, Yushkevich PA. Multi-atlas segmentation with joint label fusion and corrective learning-an open source implementation. Front Neuroinform. 2013;7:27. doi:10.3389/fninf.2013.00027
25. Mori S, Wu D, Ceritoglu C, et al. MRICloud: Delivering High-Throughput MRI Neuroinformatics as Cloud-Based Software as a Service. Computing in Science Engineering. 2016;18(5):21-35. doi:10.1109/MCSE.2016.93
26. Landman BA, Huang AJ, Gifford A, et al. Multi-parametric neuroimaging reproducibility: a 3-T resource study. Neuroimage. Feb 14 2011;54(4):2854-66. doi:10.1016/j.neuroimage.2010.11.047