[1] Yacoub, E., Shmuel, A., Pfeuffer, J., Van De Moortele, P. F., Adriany, G., Andersen, P., Thomas Vaughan, J., Merkle, H., Ugurbil, K., & Hu, X. (2001). Imaging brain function in humans at 7 Tesla. Magnetic Resonance in Medicine, 45(4), 588–594. https://doi.org/10.1002/mrm.1080
[2] Guasp-Verdaguer, M., Grau-Rivera, O., Prats-Galino, A., Bargalló, N., Sánchez-Valle, R., Gelpi, E., & Soria, G. (2017). Clinical Neuropathology image 4-2017: High-resolution 7 Tesla MRI of postmortem brain specimens: improving neuroimaging-neuropathology correlations. Clinical Neuropathology, 36(07), 162–163. https://doi.org/10.5414/NP301049
[3] Birkl, C., Langkammer, C., Haybaeck, J., Ernst, C., Stollberger, R., Fazekas, F., & Ropele, S. (2014). Temperature-induced changes of magnetic resonance relaxation times in the human brain: A postmortem study. Magnetic Resonance in Medicine, 71(4), 1575–1580. https://doi.org/10.1002/mrm.24799
[4] Edlow, B. L., Mareyam, A., Horn, A., Polimeni, J. R., Witzel, T., Tisdall, M. D., Augustinack, J. C., Stockmann, J. P., Diamond, B. R., Stevens, A., Tirrell, L. S., Folkerth, R. D., Wald, L. L., Fischl, B., & van der Kouwe, A. (2019). 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Scientific Data, 6(1), 244. https://doi.org/10.1038/s41597-019-0254-8
[5] Dusek, P., Madai, V. I., Huelnhagen, T., Bahn, E., Matej, R., Sobesky, J., Niendorf, T., Acosta‐Cabronero, J., & Wuerfel, J. (2019). The choice of embedding media affects image quality, tissue R 2 * , and susceptibility behaviors in post‐mortem brain MR microscopy at 7.0T. Magnetic Resonance in Medicine, 81(4), 2688–2701. https://doi.org/10.1002/mrm.27595
[6] Nadim Farhat*, Julia Kofler* Jacob Berardinelli, Mark Stauffer, Tales Santini, Neilesh Vinjamuri, Andrea Sajewski , Salem Alkhateeb, Tiago Martins, Noah Schweitzer , Milos Ikonomovic, Howard J. Aizenstein, and Tamer S Ibrahim1 , Reusable 3D printed enclosure with integrated cutting guides for the alignment of ex-vivo MRI with ex-vivo gross brain photographs. ISMRM Annual Meeting & Exhibition, 15-20 May 2021
[7] Duan, Q., Duyn, J. H., Gudino, N., de Zwart, J. A., van Gelderen, P., Sodickson, D. K., & Brown, R. (2014). Characterization of a dielectric phantom for high-field magnetic resonance imaging applications. Medical Physics, 41(10), 102303. https://doi.org/10.1118/1.4895823
[8] Krishnamurthy, N., Santini, T., Wood, S., Kim, J., Zhao, T., Aizenstein, H. J., & Ibrahim, T. S. (2019). Computational and experimental evaluation of the Tic-Tac-Toe RF coil for 7 Tesla MRI. PloS one, 14(1), e0209663. https://doi.org/10.1371/journal.pone.0209663
[9] Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P.-F., & Gruetter, R. (2010). MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage, 49(2), 1271–1281. https://doi.org/10.1016/j.neuroimage.2009.10.0
[10] Yong-Hing, C. J., Obenaus, A., Stryker, R., Tong, K., & Sarty, G. E. (2005). Magnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain. Magnetic Resonance in Medicine, 54(2), 324–332. https://doi.org/10.1002/mrm.20578
[11] Tales Santini, Sossena Wood, Narayanan Krishnamurthy, Tiago Martins, Howard J. Aizenstein, Tamer S. Ibrahim. Improved 7 Tesla Transmit Field Homogeneity with Reduced Electromagnetic Power Deposition Using Coupled Tic Tac Toe Antennas. Scientific Reports, 2021.
[12] A novel method for tracking the progression of WMHs through the alignment of premortem in-vivo to postmortem ex-vivo MRI and histopathology. 2021 Alzheimer's Association International Conference, 2021