We present a moderation analysis of the effects of edge strengths from generalized q-sampling imaging-based tractography on the relationship between age and decline in functional fitness in older adults (n = 105, ages 55-79 years old, right-handed). The results of these moderation analyses suggest that the strengths of white matter structural connections involving the cerebellum, cingulum, and other areas involved in motor, sensory, and environmental perception may play a significant role in preserving functional fitness in older adults.
1. T. W. Chapman and R. A. Hill, “Myelin plasticity in adulthood and aging,”Neuroscience Letters, vol. 715, p. 134645,2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0304394019307487
2. I. Bennett and D. Madden, “Disconnected aging: Cerebral white matter integrity and age-related differences in cognition, ”Neuroscience, vol. 276, pp. 187–205, 2014, secrets of the CNS White Matter. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306452213009731
3. P. Kochunov, D. Williamson, J. Lancaster, P. Fox, J. Cornell, J. Blangero, and D. Glahn, “Fractional anisotropy ofwater diffusion in cerebral white matter across the lifespan,”Neurobiology of Aging, vol. 33, no. 1, pp. 9–20, 2012.[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0197458010000448
4. S. M. Bruijn, A. Van Impe, J. Duysens, and S. P. Swinnen, “White matter microstructural organization and gait stability in older adults,” Frontiers in Aging Neuroscience, vol. 6, p. 104, 2014. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnagi.2014.00104
5. J. Oschwald,S. M ́erillat,L. J ̈ancke,and R. D. Seidler,“Fractional anisotropy in selected,motor-related white matter tracts and its cross-sectional and longitudinal associations with motor function in healthy older adults,” Frontiers in Human Neuroscience,vol. 15,p. 278,2021. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnhum.2021.621263
6. A. Tsang, C. A. Lebel, S. L. Bray, B. G. Goodyear, M. Hafeez, R. C. Sotero, C. R. McCreary, and R. Frayne, “White matter structural connectivity is not correlated to cortical resting-state functional connectivityover the healthy adult lifespan,” Frontiers in Aging Neuroscience, vol. 9, p. 144, 2017. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnagi.2017.00144
7. S. Hirsiger, V. Koppelmans, S. Merillat, F. Liem, B. Erdeniz, R. D. Seidler, and L. Jancke, “Structural and functional connectivity in healthy aging: Associations for cognition and motor behavior,” Human Brain Mapping, vol. 37, no. 3,pp. 855–867, 2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23067
8. S. Michielse, N. Coupland, R. Camicioli, R. Carter, P. Seres, J. Sabino, and N. Malykhin, “Selective effects of aging on brain white matter microstructure: A diffusion tensor imaging tractography study,” NeuroImage, vol. 52, no. 4, pp.1190–1201, 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1053811910007263
9. M. R. Wiegell, H. B. W. Larsson, and V. J. Wedeen, “Fiber crossing in human brain depicted with diffusion tensor mr imaging,”Radiology, vol. 217, no. 3, pp. 897–903, 2000, pMID: 11110960. [Online]. Available: https://doi.org/10.1148/radiology.217.3.r00nv43897
10. F.-C. Yeh, V. J. Wedeen, and W.-Y. I. Tseng, “Generalized q-sampling imaging,” IEEE transactions on medical imaging,vol. 29, no. 9, pp. 1626–1635, 2010.
11. F.-C. Yeh, T. D. Verstynen, Y. Wang, J. C. Fernandez-Miranda, and W.-Y. I. Tseng, “Deterministic diffusion fiber tracking improved by quantitative anisotropy,” PLOS ONE, vol. 8, no. 11, p. null, 11 2013. [Online]. Available: https://doi.org/10.1371/journal.pone.0080713
12. Z. Jin, Y. Bao, Y. Wang, Z. Li, X. Zheng, S. Long, and Y. Wang, “Differences between generalized q-sampling imaging and diffusion tensor imaging in visualization of crossing neural fibers in the brain,” Surgical and radiologic anatomy: SRA, vol. 41, no. 9, p. 1019—1028, September 2019. [Online]. Available: https://europepmc.org/articles/PMC6694094
13. N. P. Gothe, J. Fanning, E. Awick, D. Chung, T. R. Wojcicki, E. A. Olson, S. P. Mullen, M. Voss, K. I. Erickson, A. F. Kramer, and E. McAuley, “Executive function processes predict mobility outcomes in older adults,”Journal of the American Geriatrics Society, vol. 62, no. 2, pp. 285–290, 2014. [Online]. Available: https://agsjournals.onlinelibrary.wiley.com/doi/abs/10.1111/jgs.12654
14. K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko, M. L. Waskom, and S. Ghosh, “Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python,” Frontiers in Neuroinformatics, vol. 5,p. 13, 2011.
15. K. J. Gorgolewski, O. Esteban, C. J. Markiewicz, E. Ziegler, D. G. Ellis, M. P. Notter, D. Jarecka, H. Johnson,C. Burns, A. Manh ̃aes-Savio, C. Hamalainen, B. Yvernault, T. Salo, K. Jordan, M. Goncalves, M. Waskom, D. Clark,J. Wong, F. Loney, M. Modat, B. E. Dewey, C. Madison, M. Visconti di Oleggio Castello, M. G. Clark, M. Dayan, D. Clark, A. Keshavan, B. Pinsard, A. Gramfort, S. Berleant, D. M. Nielson, S. Bougacha, G. Varoquaux, B. Cipollini,R. Markello, A. Rokem, B. Moloney, Y. O. Halchenko, D. Wassermann, M. Hanke, C. Horea, J. Kaczmarzyk, G. de Hol-lander, E. DuPre, A. Gillman, D. Mordom, C. Buchanan, R. Tungaraza, W. M. Pauli, S. Iqbal, S. Sikka, M. Mancini, Y. Schwartz, I. B. Malone, M. Dubois, C. Frohlich, D. Welch, J. Forbes, J. Kent, A. Watanabe, C. Cumba, J. M.Huntenburg, E. Kastman, B. N. Nichols, A. Eshaghi, D. Ginsburg, A. Schaefer, B. Acland, S. Giavasis, J. Kleesiek, D. Erickson, R. Kuttner, C. Haselgrove, C. Correa, A. Ghayoor, F. Liem, J. Millman, D. Haehn, J. Lai, D. Zhou , R. Blair, T. Glatard, M. Renfro, S. Liu, A. E. Kahn, F. Perez-Garcıa, W. Triplett, L. Lampe, J. Stadler, X.-Z. Kong, M. Hallquist, A. Chetverikov, J. Salvatore, A. Park, R. Poldrack, R. C. Craddock, S. Inati, O. Hinds, G. Cooper, L. N.Perkins, A. Marina, A. Mattfeld, M. Noel, L. Snoek, K. Matsubara, B. Cheung, S. Rothmei, S. Urchs, J. Durnez, F. Mertz, D. Geisler, A. Floren, S. Gerhard, P. Sharp, M. Molina-Romero, A. Weinstein, W. Broderick, V. Saase,S. K. Andberg, R. Harms, K. Schlamp, J. Arias, D. Papadopoulos Orfanos, C. Tarbert, A. Tambini, A. De La Vega, T. Nickson, M. Brett, M. Falkiewicz, K. Podranski, J. Linkersdorfer, G. Flandin, E. Ort, D. Shachnev, D. McNamee, A. Davison, J. Varada, I. Schwabacher, J. Pellman, M. Perez-Guevara, R. Khanuja, N. Pannetier, C. McDermottroe, and S. Ghosh, “Nipype,” Software, 2018.
16. A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, A. Gramfort, B. Thirion, and G. Varoquaux, “Machine learning for neuroimaging with scikit-learn,” Frontiers in Neuroinformatics, vol. 8, 2014. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fninf.2014.00014/full
17. E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Frontiers in neuroinformatics, vol. 8, p. 8, 2014.
18. N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee, “N4itk: Improved n3bias correction,” IEEE Transactions on Medical Imaging, vol. 29, no. 6, pp. 1310–1320, 2010.
19. B. Avants, C. Epstein, M. Grossman, and J. Gee, “Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain,” Medical Image Analysis, vol. 12, no. 1, pp.26–41, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1361841507000606
20. Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden markov random field modeland the expectation-maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001.
21. J. Veraart, D. S. Novikov, D. Christiaens, B. Ades-Aron, J. Sijbers, and E. Fieremans, “Denoising of diffusion mri usingrandom matrix theory,” NeuroImage, vol. 142, pp. 394–406, 2016.
22. J. L. Andersson and S. N. Sotiropoulos, “An integrated approach to correction for off-resonance effects and subject movement in diffusion mr imaging,” Neuroimage, vol. 125, pp. 1063–1078, 2016.
23. J. L. Andersson, M. S. Graham, E. Zsoldos, and S. N. Sotiropoulos, “Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion mr images,” Neuroimage, vol. 141, pp. 556–572, 2016.
24. J. L. Andersson, S. Skare, and J. Ashburner, “How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging,” Neuroimage, vol. 20, no. 2, pp. 870–888, 2003.
25. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, ̇I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
26. A. Hayes, "Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition: A Regression-Based Approach", ser. Methodology in the Social Sciences. Guilford Publications, 2017. [Online]. Available:https://books.google.com/books?id=8ZM6DwAAQBAJ
27. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, “Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mrisingle-subject brain,” Neuroimage, vol. 15, no. 1, pp. 273–289, 2002.
28. M. A. Statton, A. Vazquez, S. M. Morton, E. V. Vasudevan, and A. J. Bastian, “Making sense of cerebellar contributions to perceptual and motor adaptation, ”The Cerebellum, vol. 17, no. 2, pp. 111–121, 2018.
29. C. Metzler-Baddeley, D. K. Jones, J. Steventon, L. Westacott, J. P. Aggleton, and M. J. O’Sullivan, “Cingulum microstructure predicts cognitive control in older age and mild cognitive impairment,” Journal of Neuroscience, vol. 32, no. 49, pp. 17 612–17 619, 2012.4
30. E. J. Bubb, C. Metzler-Baddeley, and J. P. Aggleton, “The cingulum bundle: Anatomy, function, and dysfunction, ”Neuroscience Biobehavioral Reviews, vol. 92, pp. 104–127, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0149763418300198
31. D. H. Hubel, “Exploration of the primary visual cortex, 1955–78,” Nature, vol. 299, pp. 515–524, 1982.
32. P. Johns, “Chapter 3 - functional neuroanatomy,” in Clinical Neuroscience, P. Johns, Ed. Churchill Livingstone, 2014, pp. 27–47. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780443103216000035
33. C. Lopez, “Vestibular cortex,” in Brain Mapping, A. W. Toga, Ed. Waltham: Academic Press, 2015, pp. 305–312. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B978012397025100227X
34. M. Spiridon, B. Fischl, and N. Kanwisher, “Location and spatial profile of category-specific regions in human extrastriate cortex,” Human Brain Mapping, vol. 27, no. 1, pp. 77–89, 2006. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.20169
35. K. Denys, W. Vanduffel, D. Fize, K. Nelissen, H. Peuskens, D. Van Essen, and G. A. Orban, “The processing of visual shape in the cerebral cortex of human and nonhuman primates: A functional magneticresonance imaging study,” Journal of Neuroscience, vol. 24, no. 10, pp. 2551–2565, 2004. [Online]. Available: https://www.jneurosci.org/content/24/10/2551
36. M. L. Seghier, “The angular gyrus: Multiple functions and multiple subdivisions,” The Neuroscientist, vol. 19, no. 1,pp. 43–61, 2013, pMID: 22547530. [Online]. Available: https://doi.org/10.1177/1073858412440596
37. M. R. Delong, A. P. Georgopoulos, M. D. Crutcher, S. J. Mitchell, R. T. Richardson, and G. E. Alexander, "Functional Organization of the Basal Ganglia: Contributions of Single-Cell Recording Studies." John Wiley Sons, Ltd, 1984, ch. 5,pp. 64–82. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470720882.ch5
38. W. R. Marchand, J. N. Lee, J. W. Thatcher, E. W. Hsu, E. Rashkin, Y. Suchy, G. Chelune, J. Starr, and S. S. Barbera, “Putamen coactivation during motor task execution,” Neuroreport, vol. 19, no. 9, pp. 957–960, 2008.
39. M. Gillies, J. Hyam, A. Weiss, C. Antoniades, R. Bogacz, J. Fitzgerald, T. Aziz, M. A. Whittington, and A. L. Green, “The cognitive role of the globus pallidus interna; insights from disease states,” Experimental brain research, vol. 235,no. 5, p. 1455, 2017.
40. E. V. Evarts and W. T. Thach, “Motor mechanisms of the cns:Cerebrocerebellar interrelations,”Annual Review of Physiology, vol. 31, no. 1, pp. 451–498, 1969, pMID: 4885774. [Online]. Available:https://doi.org/10.1146/annurev.ph.31.030169.002315
41. L. Q. Uddin, J. S. Nomi, B. H ́ebert-Seropian, J. Ghaziri, and O. Boucher, “Structure and function of the human insula,” Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society, vol. 34, no. 4,p. 300, 2017.
42. I. I. Goldberg, M. Harel, and R. Malach, “When the brain loses its self: prefrontal inactivation during sensorimotorprocessing, ”Neuron, vol. 50, no. 2, pp. 329–339, 2006.
43. A. E. Cavanna and M. R. Trimble, “The precuneus: a review of its functional anatomy and behavioural correlates,” Brain, vol. 129, no. 3, pp. 564–583, 01 2006. [Online]. Available: https://doi.org/10.1093/brain/awl004
44. S. Caspers and K. Zilles, “Microarchitecture and connectivity of the parietal lobe,” Handbook of clinical neurology, vol.151, pp. 53–72, 2018.
45. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal statistical society: series B (Methodological), vol. 57, no. 1, pp. 289–300, 1995.