Fast imaging is essential in neonatal brain MRI. Deep learning-based methods can provide high acceleration rates but their performance is instable when limited training data are available. Subspace model-based approach could reduce the dimensionality of imaging and improve reconstruction stability. This work presents a novel method to integrate neonate-specific subspace model and model-driven deep learning, making stable and ultrafast neonatal MR imaging possible. The feasibility and potential of the proposed method have been demonstrated using in vivo data from four medical centers, producing very encouraging results. With further development, the proposed method may provide an effective tool for neonatal imaging.
[1]. Li, G., Wang, L., Yap, P. T., Wang, F., Wu, Z., Meng, Y., ... & Shen, D. (2019). Computational neuroanatomy of baby brains: A review. NeuroImage, 185, 906-925.
[2]. Levine, D., Barnes, P. D., Robertson, R. R., Wong, G., & Mehta, T. S. (2003). Fast MR imaging of fetal central nervous system abnormalities. Radiology, 229(1), 51-61.
[3]. Hillenbrand, C. M., & Reykowski, A. (2012). MR imaging of the newborn: a technical perspective. Magnetic Resonance Imaging Clinics, 20(1), 63-79.
[4]. Kozak, B. M., Jaimes, C., Kirsch, J., & Gee, M. S. (2020). MRI techniques to decrease imaging times in children. Radiographics, 40(2), 485-502.
[5]. Pruessmann KP, Weiger M, Scheidegger MB, et al. Sensitivity encoding for fast MRI. Magn Reson Med 1999;42(5):952–62.
[6]. Larkman, D. J., Hajnal, J. V., Herlihy, A. H., Coutts, G. A., Young, I. R., & Ehnholm, G. (2001). Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. Journal of Magnetic Resonance Imaging, 13(2), 313-317.
[7]. Lustig, M., Donoho, D., & Pauly, J. M. (2007). Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58(6), 1182-1195.
[8]. Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F., ... & Liang, D. (2016, April). Accelerating magnetic resonance imaging via deep learning. In 2016 IEEE 13th international symposium on biomedical imaging (ISBI) (pp. 514-517). IEEE.
[9]. Guan, Y., Li, Y., Li, Y., et al. (2020). A Further Analysis of Deep Instability in Image Reconstruction. In Proceedings of the 29th Annual Meeting of ISMRM, Sydney, Australia.
[10]. Antun V , Renna F , Poon C , et al. On instabilities of deep learning in image reconstruction and the potential costs of AI, Proc. Natl. Acad. Sci. U. S. A., 2020; 117(48): 30088–30095.
[11]. Knoll F , Hammernik K , Kobler E , et al. Assessment of the generalization of learned image reconstruction and the potential for transfer learning, Magn. Reson. Med., 2019; 81(1): 116–128.
[12]. Liang, Z. P. (2007, April). Spatiotemporal imagingwith partially separable functions. In 2007 4th IEEE international symposium on biomedical imaging: from nano to macro (pp. 988-991). IEEE.
[13]. Lam, F., & Liang, Z. P. (2014). A subspace approach to high‐resolution spectroscopic imaging. Magnetic Resonance in Medicine, 71(4), 1349-1357.
[14]. Li, Y., Lam, F., Clifford, B., & Liang, Z. P. (2017). A subspace approach to spectral quantification for MR spectroscopic imaging. IEEE Transactions on Biomedical Engineering, 64(10), 2486-2489.
[15]. Lam, F., Li, Y., Guo, R., Clifford, B., & Liang, Z. P. (2020). Ultrafast magnetic resonance spectroscopic imaging using SPICE with learned subspaces. Magnetic Resonance in Medicine, 83(2), 377-390.
[16]. Makropoulos, A., Robinson, E. C., Schuh, A., Wright, R., Fitzgibbon, S., Bozek, J., ... & Rueckert, D. (2018). The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage, 173, 88-112.
[17]. Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E., Bucholz, R., ... & WU-Minn HCP Consortium. (2012). The Human Connectome Project: a data acquisition perspective. Neuroimage, 62(4), 2222-2231.
[18]. Bauschke, H. H., & Borwein, J. M. (1996). On projection algorithms for solving convex feasibility problems. SIAM review, 38(3), 367-426.
[19]. Cordero-Grande, L., Teixeira, R. P. A., Hughes, E. J., Hutter, J., Price, A. N., & Hajnal, J. V. (2016). Sensitivity encoding for aligned multishot magnetic resonance reconstruction. IEEE Transactions on Computational Imaging, 2(3), 266-280.
[20]. Cordero‐Grande, L., Hughes, E. J., Hutter, J., Price, A. N., & Hajnal, J. V. (2018). Three‐dimensional motion corrected sensitivity encoding reconstruction for multi‐shot multi‐slice MRI: application to neonatal brain imaging. Magnetic resonance in medicine, 79(3), 1365-1376.
[21]. J. Schlemper, J. Caballero, J.V. Hajnal, A. Price, D. Rueckert, “A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction”, IEEE TMI, DOI: 10. 1109/TMI.2017.2760978 (2017).