The recent development of relative cerebrovascular reactivity (rCVR) mapping derived from task-free resting-state blood-oxygenation-level-dependent fMRI resolves issues of experimental complications from hypercapnic challenge or pharmacological administrations required in conventional CVR mapping. While human clinical rCVR studies have begun, there lacks rCVR characterization in healthy adult rodents before it can be applied to preclinical models of neuropathology for translational research. This study demonstrated the feasibility of rCVR mapping using resting-state fMRI at 7 Tesla in mice. The results also revealed potential rCVR lateralization in cortical regions and heterogenous vascularization along the septotemporal axis of the hippocampus.
Haller, S., Bonati, L. H., Rick, J., Klarhöfer, M., Speck, O., Lyrer, P. A., Bilecen, D., Engelter, S. T., & Wetzel, S. G. (2008). Reduced cerebrovascular reserve at co2bold MR imaging is associated with increased risk of periinterventional ischemic lesions during carotid endarterectomy or stent placement: Preliminary results1. Radiology, 249(1), 251–258. https://doi.org/10.1148/radiol.2491071644
Geranmayeh, F., Wise, R. J. S., Leech, R., & Murphy, K. (2015). Measuring vascular reactivity with breath-holds after stroke: A method to aid interpretation of group-level bold signal changes in longitudinal fmri studies. Human Brain Mapping, 36(5), 1755–1771. https://doi.org/10.1002/hbm.22735
Yezhuvath, U. S., Lewis-Amezcua, K., Varghese, R., Xiao, G., & Lu, H. (2009). On the assessment of cerebrovascular reactivity using hypercapnia bold MRI. NMR in Biomedicine, 22(7), 779–786. https://doi.org/10.1002/nbm.1392
Ma, J., Mehrkens, J. H., Holtmannspoetter, M., Linke, R., Schmid-Elsaesser, R., Steiger, H.-J., Brueckmann, H., & Bruening, R. (2007). Perfusion MRI before and after acetazolamide administration for assessment of cerebrovascular reserve capacity in patients with symptomatic internal carotid artery (ICA) occlusion: Comparison with 99mTc-ECD SPECT. Neuroradiology, 49(4), 317–326. https://doi.org/10.1007/s00234-006-0193-x
Golestani, A. M., Wei, L. L., & Chen, J. J. (2016). Quantitative mapping of cerebrovascular reactivity using resting-state bold fmri: Validation in healthy adults. NeuroImage, 138, 147–163. https://doi.org/10.1016/j.neuroimage.2016.05.025
Li, Q., Bian, S., Liu, B., Hong, J., Toth, M., & Sun, T. (2013). Establishing brain functional laterality in adult mice through unilateral gene manipulation in the embryonic cortex. Cell Research, 23(9), 1147–1149. https://doi.org/10.1038/cr.2013.106
Kim, S., Mátyás, F., Lee, S., Acsády, L., & Shin, H.-S. (2012). Lateralization of observational fear learning at the cortical but not thalamic level in mice. Proceedings of the National Academy of Sciences, 109(38), 15497–15501. https://doi.org/10.1073/pnas.1213903109
Grivas, I., Michaloudi, H., Batzios, C., Chiotelli, M., Papatheodoropoulos, C., Kostopoulos, G., & Papadopoulos, G. C. (2003). Vascular network of the rat hippocampus is not homogeneous along the septotemporal axis. Brain Research, 971(2), 245–249. https://doi.org/10.1016/s0006-8993(03)02475-2
Komotar, R. J., Kim, G. H., Sughrue, M. E., Otten, M. L., Rynkowski, M. A., Kellner, C. P., Hahn, D. K., Merkow, M. B., Garrett, M. C., Starke, R. M., & Connolly, E. S. (2007). Neurologic assessment of somatosensory dysfunction following an experimental rodent model of cerebral ischemia. Nature Protocols, 2(10), 2345–2347. https://doi.org/10.1038/nprot.2007.359
Gartshore, G., Patterson, J., & Macrae, I. M. (1997). Influence of ischemia and reperfusion on the course of brain tissue swelling and blood–brain barrier permeability in a rodent model of transient focal cerebral ischemia. Experimental Neurology, 147(2), 353–360. https://doi.org/10.1006/exnr.1997.6635
Boychuk, J. A., Adkins, D. A. L., & Kleim, J. A. (2010). Distributed versus focal cortical stimulation to enhance motor function and motor map plasticity in a rodent model of ischemia. Neurorehabilitation and Neural Repair, 25(1), 88–97. https://doi.org/10.1177/1545968310385126
Levy RB;Marquarding T;Reid AP;Pun CM;Renier N;Oviedo HV; (n.d.). Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nature communications. Retrieved November 2, 2021, from https://pubmed.ncbi.nlm.nih.gov/31239458/.
Liu, P., Liu, G., Pinho, M. C., Lin, Z., Thomas, B. P., Rundle, M., Park, D. C., Huang, J., Welch, B. G., & Lu, H. (2021). Cerebrovascular reactivity mapping using resting-state bold functional MRI in healthy adults and patients with moyamoya disease. Radiology, 299(2), 419–425. https://doi.org/10.1148/radiol.2021203568
Xiong, B., Li, A., Lou, Y., Chen, S., Long, B., Peng, J., Yang, Z., Xu, T., Yang, X., Li, X., Jiang, T., Luo, Q., & Gong, H. (2017). Precise cerebral vascular atlas in stereotaxic coordinates of Whole Mouse Brain. Frontiers in Neuroanatomy, 11. https://doi.org/10.3389/fnana.2017.00128
Kuchinka, J. (2017). Morphometry and variability of the Brain Arterial Circle in chinchilla (Chinchilla Laniger, Molina). The Anatomical Record, 300(8), 1472–1480. https://doi.org/10.1002/ar.23566
Long, J. A., Watts, L. T., Li, W., Shen, Q., Muir, E. R., Huang, S., Boggs, R. C., Suri, A., & Duong, T. Q. (2015). The effects of perturbed cerebral blood flow and cerebrovascular reactivity on structural MRI and behavioral readouts in mild traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism, 35(11), 1852–1861. https://doi.org/10.1038/jcbfm.2015.143
Ono, Y., Morikawa, S., Inubushi, T., Shimizu, H., & Yoshimoto, T. (1997). T2*-weighted magnetic resonance imaging of cerebrovascular reactivity in rat reversible focal cerebral ischemia. Brain Research, 744(2), 207–215. https://doi.org/10.1016/s0006-8993(96)01079-7
Tsai, K.-J., Yang, C.-H., Lee, P.-C., Wang, W.-T., Chiu, M.-J., & Shen, C.-K. J. (2009). Asymmetric expression patterns of brain transthyretin in normal mice and a transgenic mouse model of alzheimer's disease. Neuroscience, 159(2), 638–646. https://doi.org/10.1016/j.neuroscience.2008.12.045
Carlson, J. N., & Glick, S. D. (1989). Cerebral lateralization as a source of interindividual differences in behavior. Experientia, 45(9), 788–798. https://doi.org/10.1007/bf01954054
Spring, S., Lerch, J. P., Wetzel, M. K., Evans, A. C., & Henkelman, R. M. (2010). Cerebral asymmetries in 12-week-old C57BL/6J mice measured by magnetic resonance imaging. NeuroImage, 50(2), 409–415. https://doi.org/10.1016/j.neuroimage.2009.12.043
Apostolova, I., Wunder, A., Dirnagl, U., Michel, R., Stemmer, N., Lukas, M., Derlin, T., Gregor-Mamoudou, B., Goldschmidt, J., Brenner, W., & Buchert, R. (2012). Brain perfusion SPECT in the mouse: Normal pattern according to gender and age. NeuroImage, 63(4), 1807–1817. https://doi.org/10.1016/j.neuroimage.2012.08.038
Tanti, A., & Belzung, C. (2013). Neurogenesis along the septo-temporal axis of the hippocampus: Are depression and the action of antidepressants region-specific? Neuroscience, 252, 234–252. https://doi.org/10.1016/j.neuroscience.2013.08.017
Ashton, D., Van Reempts, J., Haseldonckx, M., & Willems, R. (1989). Dorsal-ventral gradient in vulnerability of CA1 hippocampus to ischemia: A combined histological and electrophysiological study. Brain Research, 487(2), 368–372. https://doi.org/10.1016/0006-8993(89)90842-1