Sodium MRI can acquire important biological information about cell integrity and tissue viability, but its clinical application has been limited by low SNR and poor spatial resolution. We propose a novel method to reconstruct high-quality sodium images from limited and noisy k-space data. The new method synergistically integrates model-based reconstruction with deep learning. Simulation and experimental results show that the proposed method can reconstruct high-SNR and high-resolution sodium images, which clearly delineate lesions such as brain tumors.
1. Lu A, Atkinson IC, Thulborn KR. Sodium magnetic resonance imaging and its bioscale of tissue sodium concentration. In: EMagRes. John Wiley & Sons, Ltd; 2007.
2. Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging. 2013;38(3):511-529.
3. Madelin G, Lee JS, Regatte RR, Jerschow A. Sodium MRI: Methods and applications. Prog Nucl Magn Reson Spectrosc. 2014;79:14-47.
4. Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage. 2018;168:250-268.
5. Poku LO, Phil M, Cheng Y, Wang K, Sun X. 23Na‐MRI as a noninvasive biomarker for cancer diagnosis and prognosis. J Magn Reson Imaging. 2021;53(4):995-1014.
6. Zaric O, Juras V, Szomolanyi P, et al. Frontiers of sodium MRI revisited: From cartilage to brain imaging. J Magn Reson Imaging. 2021;54(1):58-75.
7. Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR. Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med. 2010;63(6):1583-1593.
8. Atkinson IC, Lu A, Thulborn KR. Clinically constrained optimization of flexTPI acquisition parameters for the tissue sodium concentration bioscale. Magn Reson Med. 2011;66(4):1089-1099.
9. Thulborn KR, Lu A, Atkinson IC, et al. Residual tumor volume, cell volume fraction, and tumor cell kill during fractionated chemoradiation therapy of human glioblastoma using quantitative sodium MR imaging. Clin Cancer Res. 2019;25(4):1226-1232.
10. Nagel AM, Laun FB, Weber M-A, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med. 2009;62(6):1565-1573.
11. Qian Y, Stenger VA, Boada FE. Parallel imaging with 3D TPI trajectory: SNR and acceleration benefits. Magn Reson Imaging. 2009;27(5):656-663.
12. Pipe JG, Zwart NR, Aboussouan EA, Robison RK, Devaraj A, Johnson KO. A new design and rationale for 3D orthogonally oversampled k -space trajectories. Magn Reson Med. 2011;66(5):1303-1311.
13. Grover H, Qian Y, Boada FE, Lakshmanan K, Flanagan S, Lui YW. MRI evidence of altered callosal sodium in mild traumatic brain injury. Am J Neuroradiol. 2018;39(12):2200-2204.
14. Neto LPN, Madelin G, Sood TP, et al. Quantitative sodium imaging and gliomas: A feasibility study. Neuroradiology. 2018;60(8):795-802.
15. Gnahm C, Bock M, Bachert P, Semmler W, Behl NGR, Nagel AM. Iterative 3D projection reconstruction of 23Na data with an 1H MRI constraint. Magn Reson Med. 2014;71(5):1720-1732.
16. Gnahm C, Nagel AM. Anatomically weighted second-order total variation reconstruction of 23Na MRI using prior information from 1H MRI. Neuroimage. 2015;105:452-461.
17. Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR. Compressed sensing sodium MRI of cartilage at 7T: Preliminary study. J Magn Reson. 2012;214:360-365.
18. Lachner S, Zaric O, Utzschneider M, et al. Compressed sensing reconstruction of 7 Tesla 23Na multi-channel breast data using 1H MRI constraint. Magn Reson Imaging. 2019;60:145-156.
19. Behl NGR, Gnahm C, BacherT P, Ladd ME, Nagel AM. Three-dimensional dictionary-learning reconstruction of 23Na MRI data. Magn Reson Med. 2016;75(4):1605-1616.
20. Utzschneider M, Behl NGR, Lachner S, et al. Accelerated quantification of tissue sodium concentration in skeletal muscle tissue: Quantitative capability of dictionary learning compressed sensing. Magn Reson Mater Physics, Biol Med. 2020;33(4):495-505.
21. Adlung A, Paschke NK, Golla AK, et al. 23Na MRI in ischemic stroke: Acquisition time reduction using postprocessing with convolutional neural networks. NMR Biomed. 2021;34(4):e4474.
22. Koppers S, Coussoux E, Romanzetti S, Reetz K, Merhof D. Sodium image denoising based on a convolutional denoising autoencoder. In: Bildverarbeitung Für Die Medizin 2019. Springer Vieweg; 2019:98-103.
23. Antun V, Renna F, Poon C, Adcock B, Hansen AC. On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc Natl Acad Sci. 2020;117(48):30088-30095.
24. Knoll F, Hammernik K, Kobler E, Pock T, Recht MP, Sodickson DK. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn Reson Med. 2019;81(1):116-128.
25. Liang Z-P, Lauterbur PC. An efficient method for dynamic magnetic resonance imaging. IEEE Trans Med Imaging. 1994;13(4):677-686.
26. Liang Z-P, Lauterbur PC. A generalized series approach to MR spectroscopic imaging. IEEE Trans Med Imaging. 1991;10(2):132-137.
27. Liang Z-P, Madore B, Glover GH, Pelc NJ. Fast algorithms for GS-model-based image reconstruction in data-sharing Fourier imaging. IEEE Trans Med Imaging. 2003;22(8):1026-1030.
28. Hess CP, Liang Z-P, Lauterbur PC. Maximum cross-entropy generalized series reconstruction. Int J Imaging Syst Technol. 1999;10(3):258-265.
29. Zhao Y, Guo R, Li Y, Thulborn KR, Liang Z-P. High-resolution sodium imaging using anatomical and sparsity constraints for denoising and recovery of novel features. Magn Reson Med. 2021;86(2):625-636.
30. Yang Y, Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Curran Associates Inc.; 2016:10-18.
31. Aggarwal HK, Mani MP, Jacob M. MoDL: Model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging. 2019;38(2):394-405.
32. Schlemper J, Caballero J, Hajnal J V., Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging. 2018;37(2):491-503.
33. Haldar JP, Hernado D, Song SK, Liang Z-P. Anatomically constrained reconstruction from noisy data. Magn Reson Med. 2008;59(4):810-818.