We introduce a novel framework that jointly performs advanced image reconstruction and model-based MR parameter mapping, where various traditional and modern reconstruction techniques and signal relaxation models (T1, T2, T2*, etc) can be integrated as a plug-and-play manner. Using the proposed framework, we also incorporated model-based parameter mapping with scan-specific deep learning reconstruction (a method named LORAKI). The experiment results with T2, T2* and T1 indicate that this synergistic combination is advantageous, providing improved quantitative imaging over existing methods, e.g. with up to 3.6-fold, 1.7-fold, 2.3-fold NRMSE gain in T2, T2* and T1 estimation, respectively.
1. Wang L, Schweitzer ME, Padua A, Regatte RR. Rapid 3D-T1 mapping of cartilage with variable flip angle and parallel imaging at 3.0T. J. Magn. Reson. Imaging 2008;27:154–161 doi: 10.1002/jmri.21109.
2. Doneva M, Börnert P, Eggers H, Stehning C, Sénégas J, Mertins A. Compressed sensing reconstruction for magnetic resonance parameter mapping. Magn. Reson. Med. 2010;64:1114–1120 doi: 10.1002/mrm.22483.
3. Huang C, Graff CG, Clarkson EW, Bilgin A, Altbach MI. T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing. Magn. Reson. Med. 2012;67:1355–1366 doi: 10.1002/mrm.23128.
4. Velikina JV, Alexander AL, Samsonov A. Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension. Magn. Reson. Med. 2013;70:1263–1273 doi: 10.1002/mrm.24577.
5. Zhang T, Pauly JM, Levesque IR. Accelerating parameter mapping with a locally low rank constraint. Magn. Reson. Med. 2015;73:655–661 doi: 10.1002/mrm.25161.
6. Zhao B, Lu W, Hitchens TK, Lam F, Ho C, Liang Z-P. Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn. Reson. Med. 2015;74:489–498 doi: 10.1002/mrm.25421.
7. Sumpf TJ, Uecker M, Boretius S, Frahm J. Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI. J. Magn. Reson. Imaging 2011;34:420–428 doi: 10.1002/jmri.22634.
8. Sumpf TJ, Petrovic A, Uecker M, Knoll F, Frahm J. Fast T2 Mapping With Improved Accuracy Using Undersampled Spin-Echo MRI and Model-Based Reconstructions With a Generating Function. IEEE Trans. Med. Imaging 2014;33:2213–2222 doi: 10.1109/TMI.2014.2333370.
9. Zhao B, Lam F, Liang Z-P. Model-Based MR Parameter Mapping With Sparsity Constraints: Parameter Estimation and Performance Bounds. IEEE Trans. Med. Imaging 2014;33:1832–1844 doi: 10.1109/TMI.2014.2322815.
10. Roeloffs V, Wang X, Sumpf TJ, Untenberger M, Voit D, Frahm J. Model-based reconstruction for T1 mapping using single-shot inversion-recovery radial FLASH. Int. J. Imaging Syst. Technol. 2016;26:254–263 doi: 10.1002/ima.22196.
11. Wang X, Roeloffs V, Klosowski J, et al. Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH. Magn. Reson. Med. 2018;79:730–740 doi: 10.1002/mrm.26726.
12. Hilbert T, Sumpf TJ, Weiland E, et al. Accelerated T2 mapping combining parallel MRI and model-based reconstruction: GRAPPATINI. J. Magn. Reson. Imaging 2018;48:359–368 doi: 10.1002/jmri.25972.
13. Maier O, Schoormans J, Schloegl M, et al. Rapid T1 quantification from high resolution 3D data with model-based reconstruction. Magn. Reson. Med. 2019;81:2072–2089 doi: 10.1002/mrm.27502.
14. Cohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn. Reson. Med. 2018;80:885–894 doi: 10.1002/mrm.27198.
15. Liu F, Feng L, Kijowski R. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping. Magn. Reson. Med. 2019;82:174–188 doi: 10.1002/mrm.27707.
16. Liu F, Kijowski R, El Fakhri G, Feng L. Magnetic resonance parameter mapping using model-guided self-supervised deep learning. Magn. Reson. Med. 2021;85:3211–3226 doi: 10.1002/mrm.28659.
17. Jun Y, Shin H, Eo T, Kim T, Hwang D. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method. Med. Image Anal. 2021;70:102017 doi: 10.1016/j.media.2021.102017.
18. Kim TH, Garg P, Haldar JP. LORAKI: Autocalibrated Recurrent Neural Networks for Autoregressive MRI Reconstruction in k-Space. ArXiv:1904.09390. 2019.
19. Kim TH, Zhang Z, Cho J, Gagoski B, Haldar J, Bilgic B. Robust Multi-shot EPI with Untrained Artificial Neural Networks: Unsupervised Scan-specific Deep Learning for Blip Up-Down Acquisition (BUDA). In: International Society for Magnetic Resonance in Medicine Annual Meeting (ISMRM). ; 2021. p. 224.
20. Bilgic B, Kim TH, Liao C, et al. Improving parallel imaging by jointly reconstructing multi-contrast data. Magn. Reson. Med. 2018;80:619–632 doi: 10.1002/mrm.27076.
21. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. 1999;42:952–962 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S.
22. Chen C, Li Y, Huang J. Calibrationless Parallel MRI with Joint Total Variation Regularization. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin, Heidelberg: Springer; 2013. pp. 106–114. doi: 10.1007/978-3-642-40760-4_14.
23. Kim TH, Setsompop K, Haldar JP. LORAKS makes better SENSE: Phase-constrained partial fourier SENSE reconstruction without phase calibration. Magn. Reson. Med. 2017;77:1021–1035 doi: 10.1002/mrm.26182.
Fig. 2. LORAKI reconstruction pipeline for multi-echo MRI reconstruction, based on an unrolled conjugate gradient (CG) of the SENSE-LORAKS reconstruction. A: the forward model as in Fig. 1, d: the undersampled multi-echo data, F: Fourier transform, VC: Virtual conjugate coils, H: Hermitian adjoint, conv: convolution layers parameterized by θ = [θ1T, θ2T]T which are subject to be trained.
This LORAKI reconstruction was integrated into the “MRI Reconstruction” block in Fig. 1 and the parameters (e.g. M0, T2, θ) were optimized jointly using the total loss with the Adam optimizer.
Fig. 3. T2 estimation results. The top row displays the gold standard M0 and T2 parameter maps estimated from fully sampled (R=1) data using the least-squares fitting. The middle row displays the conventional reconstruction-based and model-based MR parameter mapping approaches. The button row displays the proposed method combined with each reconstruction technique. The NRMSE was taken between the fully sampled data and the synthetic data generated from the estimated parameter maps.