An ability to characterize the corticobulbar and corticospinal tracts from the motor cortex into the spinal cord with diffusion tensor imaging remains a challenge due to limiting factors such as achievable spatial resolutions, spatial coverages, and signal-to-noise ratio in the spinal cord. By extending the field-of-view through a combination of sub-millimeter isotropic axial and sagittal acquisitions, this study presents a technique to delineate the complete pyramidal tracts with data acquired at a sufficient spatial resolution to resolve intricate structural details such as the pyramidal decussation. Such a delineation can facilitate placement of spinal cord stimulation electrodes for movement disorder treatments.
1. Yadav, A. P., Nicolelis, M. A. L. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Mov. Disord. 32(6): 820-832, 2017.
2. Fuentes, R., Petersson, P., Siesser, W. B., Caron, M. G., Nicolelis, M. A. Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science 323(5821):1578-82, 2009.
3. Chen, N. K., Guidon, A., Chang, H. C., Song, A., W. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). Neuroimage 72: 41-47, 2013.
4. Bruce, I.P., Chang, H.C., Petty, C., Chen, N.K., Song, A.W. 3D-MB-MUSE: a robust 3D multi-slab, multi-band and multi-shot reconstruction approach for ultrahigh resolution diffusion MRI. Neuroimage, 159:46-56, 2017.
5. Bruce, I.P., Petty, C., Song, A.W., Imaging Cortical Columns in Gray Matter with Sub-Millimeter Isotropic DTI. Proc. Intl. Soc. Magn. Reson. Med. 26, 3361, 2019.
6. Bruce IP, Ma Y, Song AW. Using Sub-Millimeter Isotropic DTI to Observe the Cortical Depth Dependence of Diffusion Anisotropy and Diffusivity in-vivo. Proc. Intl. Soc. Mag. Reson. Med. 26, 248, 2021.
7. Tournier, J. D., Calamante, F., Connelly, A. MRtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22: 53-66, 2012.
8. Veraart, Jelle, et al. Denoising of diffusion MRI using random matrix theory. Neuroimage 142:394-406, 2016.
9. Veraart, J., Fieremans, E., Novikov, D.S. Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 76(5): 1582-1593, 2016.
10. Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M. Gibbs‐ringing artifact removal based on local subvoxel‐shifts. Magn. Reson. Med. 76(5): 1574-1581, 2016.
11. Yongyue, Z., Brady, M., Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging 20.1: 45-57, 2001.
12. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage, 20(2):870-888, 2003.
13. Smith SM, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(S1):208-219, 2004.
14. Avants, BB, Tustison, N, Song, G. Advanced normalization tools (ANTS). Insight j 2.365, 1-35, 2009.
15. Basser, PJ, Mattiello, J, LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B., 103, 247–254, 1994.
16. Veraart, J, Sijbers, J, Sunaert, S, Leemans, A, Jeurissen, B. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage, 81, 335-346, 2013.
17. Tournier, JD, Calamante, F, Gadian, DG, Connelly, A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using speherical deconvolution. NeuroImage, 23:1176-1185, 2004.
18. Tournier, JD. Calamante, F,Connelly, A. Improved probabilistic streamlines tractography by 2nd order integration over fiber orientation distributions. Proc. of the Intl. Soc. for Magn. Reson. Med., 2010, 1670.