This work utilizes our recently developed spin-echo EPTI technique with minimal T2’-contamination and high specificity to map the layer-dependent responses in primary motor cortex at 7T and further investigate the impact of large vessel bias from T2’ contamination. EPTI resolves multi-contrast images across the readout that are free from distortion and blurring, and simultaneously obtains a SE image with pure T2-weighting and multiple asymmetric SE images with various T2’-weightings. The activation of finger-tapping task was studied using SE-EPTI at 0.9-mm isotropic resolution. Improved specificity of layer-dependent responses was observed using pure SE images.
1 Constable, R. T., Kennan, R. P., Puce, A., McCarthy, G. & Gore, J. C. Functional NMR imaging using fast spin echo at 1.5 T. Magnetic resonance in medicine 31, 686-690 (1994).
2 Poser, B. A. & Norris, D. G. Fast spin echo sequences for BOLD functional MRI. Magnetic Resonance Materials in Physics, Biology and Medicine 20, 11 (2007).
3 Denolin, V. & Metens, T. Three‐dimensional BOLD fMRI with spin‐echo characteristics using T2 magnetization preparation and echo‐planar readouts. Magnetic Resonance in Medicine 50, 132-144 (2003).
4 Boxerman, J. L., Hamberg, L. M., Rosen, B. R. & Weisskoff, R. M. MR contrast due to intravascular magnetic susceptibility perturbations. Magnetic resonance in medicine 34, 555-566 (1995).
5 Bandettini, P. A. & Wong, E. C. Effects of biophysical and physiologic parameters on brain activation‐induced R2* and R2 changes: simulations using a deterministic diffusion model. International Journal of Imaging Systems and Technology 6, 133-152 (1995).
6 Norris, D. G. Spin-echo fMRI: the poor relation? Neuroimage 62, 1109-1115 (2012).
7 Koopmans, P. J. & Yacoub, E. Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies. Neuroimage 668-676 (2019).
8 Huber, L., Uludağ, K. & Möller, H. E. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. NeuroImage 197, 742-760 (2019).
9 Norris, D. G. & Polimeni, J. R. Laminar (f) MRI: A short history and future prospects NeuroImage (2019).
10 Goense, J. B. & Logothetis, N. K. Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magnetic resonance imaging 24, 381-392 (2006).
11 Bandettini, P. A., Wong, E. C., Jesmanowicz, A., Hinks, R. S. & Hyde, J. S. Spin‐echo and gradient‐echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR in Biomedicine 7, 12-20 (1994).
12 Yacoub, E. et al. Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields. Magnetic Resonance in Medicine 49, 655-664 (2003).
13 Pfaffenrot, V., Voelker, M. N., Kashyap, S. & Koopmans, P. J. Laminar fMRI using T2-prepared multi-echo FLASH. NeuroImage, 118163 (2021).
14 Kemper, V. G. et al. Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI. Frontiers in neuroscience 9, 163 (2015).
15 Beckett, Alexander JS, et al. "Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T." Magnetic resonance in medicine 84.6 (2020): 3128-3145.
17 Park, S., Torrisi, S., Townsend, J. D., Beckett, A. & Feinberg, D. A. Highly accelerated submillimeter resolution 3D GRASE with controlled blurring in‐weighted functional MRI at 7 Tesla: A feasibility study. Magnetic Resonance in Medicine 85, 2490-2506 (2021).
18 Olman, C. A. et al. Layer-specific fMRI reflects different neuronal computations at different depths in human V1. PloS one 7, e32536 (2012).
19 De Martino, F. et al. Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE. PloS one 8, e60514 (2013).
20 Huber, L., Uludağ, K. & Möller, H. E. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. NeuroImage (2017).
21 Huber, L. et al. Slab‐selective, BOLD‐corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal‐to‐noise ratio. Magnetic resonance in medicine 72, 137-148 (2014).
22 Jin, T. & Kim, S.-G. in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. 25-28 (IEEE).
23 Lu, H., Golay, X., Pekar, J. J. & Van Zijl, P. C. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magnetic Resonance in Medicine 50, 263-274 (2003).
24 Huber, L. et al. Layer-dependent functional connectivity methods. Progress in Neurobiology, 101835 (2020).
25 Chai, Y., Li, L., Huber, L., Poser, B. A. & Bandettini, P. A. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. Neuroimage 207, 116358 (2020).
26 Huber, L. et al. High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1. Neuron 96, 1253-1263. e1257 (2017).
27 Wang, F. et al. Echo planar time-resolved imaging (EPTI). Magnetic resonance in medicine 81, 3599-3615, doi:10.1002/mrm.27673 (2019).
28 Wang, F., Dong, Z., Wald, L. L., Polimeni, J. R. & Setsompop, K. Simultaneous pure T2 and varying T2'-weighted BOLD fMRI using Echo Planar Time-resolved Imaging for mapping cortical-depth dependent responses. NeuroImage 245, 118641 (2021).
29 Dong, Z., Wang, F., Reese, T. G., Bilgic, B. & Setsompop, K. Echo planar time-resolved imaging with subspace reconstruction and optimized spatiotemporal encoding. Magnetic resonance in medicine 84, 2442-2455 (2020).
30 Liang, Z.-P. in 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 988-991 (IEEE).
31 Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical research 29, 162-173 (1996).
32 Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14, 1370-1386 (2001).
33 Fischl, B. FreeSurfer. Neuroimage 62, 774-781 (2012).
34 Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968-980 (2006).
35 Waehnert, M. et al. Anatomically motivated modeling of cortical laminae. Neuroimage 93, 210-220 (2014).
36 Waehnert, M. D. et al. A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI. NeuroImage 125, 94-107 (2016).