We propose a novel unsupervised deep learning framework for white matter fiber clustering. Self-supervised learning is adopted to enable joint deep embedding and cluster assignment. Anatomical information is incorporated into the neural network to improve anatomical coherence. In addition, outlier removal is performed to further improve cluster quality. Our method is evaluated on three datasets and showed superior performance in terms of cluster compactness, anatomical coherence and generalization across subjects compared to several state-of-the-art algorithms.
Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical journal 66(1), 259-267 (1994)
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Mag. Res. Med 44(4), 625-632 (2000)
Zhang F, Daducci A, He Y, et al. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: a review[J]. arXiv preprint arXiv:2104.11644, 2021.
O'Donnell, L.J., Golby, A.J.,Westin, C.F.: Fiber clustering versus the parcellation-based connectome. NeuroImage 80, 283-289 (2013)
Wu, Y., Hong, Y., Ahmad, S., Lin, W., et al.: Tract dictionary learning for fast and robust recognition of ber bundles. In: MICCAI. pp. 251-259 (2020)
Zhang, F., Savadjiev, P., Cai, W., Song, Y., Rathi, Y., Tunc, B., Parker, D., Kapur, T., Schultz, R.T., Makris, N., et al.: Whole brain white matter connectivity analysis using machine learning: an application to autism. NeuroImage 172, 826-837 (2018)
Garyfallidis, E., Brett, M., Correia, M.M., et al.: Quickbundles, a method for tractography simplification. Frontiers in neuroscience 6, 175 (2012)
Zhang, F., Wu, Y., Norton, I., Rigolo, L., Rathi, Y., Makris, N., O'Donnell, L.J.: An anatomically curated ber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. NeuroImage 179, 429-447 (2018)
O'Donnell, L., Westin, C.F.: White matter tract clustering and correspondence in populations. In: MICCAI. pp. 140-147 (2005)
Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: ECCV. pp. 132-149 (2018)
Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: ICNIP. pp. 373-382 (2017)
Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML. pp. 478-487. PMLR (2016)
Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representationlearning. In: CVPR. pp. 1920{1929 (2019)
Wasserthal, J., Neher, P., Maier-Hein, K.H.: Tractseg-fast and accurate white matter tract segmentation. NeuroImage 183, 239-253 (2018)
Zhang, F., Karayumak, S.C., Homann, N., Rathi, Y., Golby, A.J., O'Donnell, L.J.: Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation. Medical Image Analysis 65, 101761 (2020)
Chen Y, Zhang C, Song Y, et al. Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2021: 497-507.
Wang Y, Sun Y, Liu Z, et al. Dynamic graph cnn for learning on point clouds[J]. Acm Transactions On Graphics (tog), 2019, 38(5): 1-12.
Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR. vol. 1, pp. 539-546 (20)
Van Essen, D.C., Smith, S.M., Barch, D.M., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Marek K, Jennings D, Lasch S, et al. The Parkinson progression marker initiative (PPMI) [J]. Progress in neurobiology, 2011, 95(4): 629-635.
Poldrack R A, Congdon E, Triplett W, et al. A phenome-wide examination of neural and cognitive function[J]. Scientific data, 2016, 3(1): 1-12.
Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Annals of Data Science 2(2), 165–193 (2015)
Norton, I. et al. SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research. Cancer Res. 77, e101–e103 (2017).
Zhang F, Noh T, Juvekar P, et al. SlicerDMRI: Diffusion MRI and tractography research software for brain cancer surgery planning and visualization[J]. JCO clinical cancer informatics, 2020, 4: 299-309.