This study aims to investigate the value of quantitative relaxation time derived from synthetic MRI (SyMRI) in the diagnosis and grading of prostate cancer (PCa). The results of this study showed that the diagnostic efficiencies of SyMRI in distinguishing PCa from most benign prostate lesions and different Gleason grades of PCa were similar to that of DWI, and the combined index of SyMRI and DWI can obtain higher diagnostic efficiencies. In addition, SyMRI has the advantages of short scanning time, unified parameters and simple operation, so it has a good prospect of clinical application.
1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin. 71 (2021) 209-249, https://doi.org/10.3322/caac.21660.
2. B. Turkbey, A.B. Rosenkrantz, M.A. Haider, A.R. Padhani, G. Villeirs, K.J. Macura, C.M. Tempany, P.L. Choyke, F. Cornud, D.J. Margolis, H.C. Thoeny, S. Verma, J. Barentsz, J.C. Weinreb, Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2, Eur Urol. 76(2019) :340-351, https://doi.org/10.1016/j.eururo.2019.02.033.
3. T.T. Stolk, I.J. de Jong, T.C. Kwee, H.B. Luiting, S.V.K Mahesh, B.H.J Doornweerd, P.M. Willemse, D. Yakar, False positives in PIRADS (V2) 3, 4, and 5 lesions: relationship with reader experience and zonal location, Abdom Radiol (NY). 44(2019) :1044-1051, https://doi.org/10.1007/s00261-019-01919-2.
4. F.V. Mertan, M.D. Greer, J.H. Shih, A.K. George, M. Kongnyuy, A. Muthigi, M.J. Merino, B.J. Wood, P.A. Pinto, P.L. Choyke, Prospective Evaluation of the Prostate Imaging Reporting and Data System Version 2 for Prostate Cancer Detection, J Urol. 196 (2016) :690-696, https://doi.org/10.1016/j.juro.2016.04.057.
5. T. Dang, G.Y. Liou, Macrophage Cytokines Enhance Cell Proliferation of Normal Prostate Epithelial Cells through Activation of ERK and Akt, Sci Rep. 8(2018) :7718, https://doi.org/10.1038/s41598-018-26143-8.
6. S.J. Hectors, S. Semaan, C. Song, S. Lewis, G.K. Haines, A. Tewari, A.R. Rastinehad, B. Taouli, Advanced Diffusion-weighted Imaging Modeling for Prostate Cancer Characterization: Correlation with Quantitative Histopathologic Tumor Tissue Composition—A Hypothesis-generating Study, Radiology. 286 (2018) :918-928, https://doi.org/10.1148/radiol.2017170904.
7. N. He, Z. Li, X. Li, W. Dai, J. Liang, Intravoxel Incoherent Motion Diffusion-Weighted Imaging Used to Detect Prostate Cancer and Stratify Tumor Grade: A Meta-Analysis, Front Oncol. 10 (2020) :1623, https://doi.org/10.3389/fonc.2020.01623.
8. Y. Liu, X. Wang, Y. Cui, Y. Jiang, Y. Jiang, L. Yu, M. Liu, W Zhang, K. Shi, J Zhang, C. Zhang, C. Li, M. Chen, Comparative Study of Monoexponential, Intravoxel Incoherent Motion, Kurtosis, and IVIM-Kurtosis Models for the Diagnosis and Aggressiveness Assessment of Prostate Cancer, Front Oncol. 10 (2020) :1763, https://doi.org/10.3389/fonc.2020.01763.
9. J. Mai, M. Abubrig, T. Lehmann, T. Hilbert, E. Weiland, M.O. Grimm, U. Teichgräber, T Franiel, T2 Mapping in Prostate Cancer, Invest Radiol. (2019) :146-152, https://doi.org/10.1097/RLI.0000000000000520.
10. P.J.V. Houdt, H.K. Agarwal, L.D.V. Buuren, S.W.T.P.J. Heijmink, S. Haack, H.G.V.D Poel, F.J. Pos, J.M. Peeters, P.L. Choyke, U.A.V.D. Heide, Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T2 mapping across multiple systems, Magn Reson Med. 79 (2018) :1586-1594, https://doi.org/10.1002/mrm.26816.
11. M. Raudner, M. Schreiner, T. Hilbert, T. Kober, M. Weber, R. Windhager, S. Trattnig, V. Juras, Accelerated T2 Mapping of the Lumbar Intervertebral Disc: Highly Undersampled K-Space Data for Robust T2 Relaxation Time Measurement in Clinically Feasible Acquisition Times, Invest Radiol. 55 (2020) :695-701, https://doi.org/Invest Radiol.2020V55N11:695-701.
12. J.B.M. Warntjes, O.D. Leinhard, J. West, P. Lundberg, Rapid magnetic resonance quantification on the brain: Optimization for clinical usage, Magn Reson Med. 60 (2008) :320-329, https://doi.org/10.1002/mrm.21635.
13. A. Hagiwara, M. Warntjes, M. Hori, C. Andica, M. Nakazawa, K.K. Kumamaru, O. Abe, S. Aoki, SyMRI of the Brain: Rapid Quantification of Relaxation Rates and Proton Density, With Synthetic MRI, Automatic Brain Segmentation, and Myelin Measurement, Invest Radiol. 52 (2017) :647-657, https://doi.org/10.1097/RLI.0000000000000365.
14. A. Hagiwara, M. Hori, K. Yokoyama, M.Y. Takemura, C. Andica, T. Tabata, K. Kamagata, M. Suzuki, K.K. Kumamaru, M. Nakazawa, N. Takano, H. Kawasaki, N. Hamasaki, A. Kunimatsu, S. Aoki, Synthetic MRI in the Detection of Multiple Sclerosis Plaques, AJNR Am J Neuroradiol. 38 (2017) :257-263, https://doi.org/10.3174/ajnr.A5012.
15. W. Krauss, M. Gunnarsson, M. Nilsson, P. Thunberg, Conventional and synthetic MRI in multiple sclerosis: a comparative study, Eur Radiol. 28 (2018) :1692-1700, https://doi.org/10.1007/s00330-017-5100-9.
16. M. Matsuda, T. Tsuda, E. Rui, W. Toshimori,S. Takeda, K. Okada, K. Nakasuka, Y. Shiraishi, H. Suekuni, Y. Kamei, M. Kurata, R. Kitazawa, T. Mochizuki, T. Kido, Enhanced Masses on Contrast-Enhanced Breast: Differentiation Using a Combination of Dynamic Contrast-Enhanced MRI and Quantitative Evaluation with Synthetic MRI, J Magn Reson Imaging. 53 (2021) :381-391, https://doi.org/10.1002/jmri.27362.
17. Q. Li, Q. Xiao, M. Yang, Q. Chai, Y. Huang, P.Y. Wu, Q. Niu, Y. Gu, Histogram analysis of quantitative parameters from synthetic MRI: Correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer, Eur J Radiol. 139 (2021) :109697, https://doi.org/10.1016/j.ejrad.2021.109697.
18. N.M. Kumar, F. Benjamin, S.E. Stern, W.J.B. Marcel, L.C.Y. Mei, F Jan, Synthetic MRI of the Knee: Phantom Validation and Comparison with Conventional MRI, Radiology. 289 (2018) :465-477, https://doi.org/10.1148/radiol.2018173007.
19. J. Yi, Y.H. Lee, H.T. Song, J.S. Suh, Double-inversion recovery with synthetic magnetic resonance: a pilot study for assessing synovitis of the knee joint compared to contrast-enhanced magnetic resonance imaging, Eur Radiol. 29 (2019) :2573-2580, https://doi.org/10.1007/s00330-018-5800-9.
20. Y. Cui, S. Han, M. Liu. P. Wu. W. Zhang, J. Zhang, C. Li, M. Chen, Diagnosis and Grading of Prostate Cancer by Relaxation Maps From Synthetic MRI, J Magn Reson Imaging. 52 (2020) :552-564, https://doi.org/10.1002/jmri.27075.
21. Y. Arita, T. Takahara, S. Yoshida, T.C. Kwee, S. Yajima, C.Ishii, R. Ishii, S. Okuda, M. Jinzaki, Y. Fujii, Quantitative Assessment of Bone Metastasis in Prostate Cancer Using Synthetic Magnetic Resonance Imaging, Invest Radiol. 54 (2019 ) :638-644, https://doi.org/10.1097/RLI.0000000000000579.
22. J.J. Lee, S. Liu, M.S. Nacif, M. Ugander, J. Han, N. Kawel, C.T. Sibley, P. Kellman, A.E. Arai, D.A. Bluemke, Myocardial T1 and extracellular volume fraction mapping at 3 tesla, J Cardiovasc Magn Reson. 13 (2011) :75, https://doi.org/10.1186/1532-429X-13-75.
23. N. Kawelboehm, M Nacif, A. Zavodni, J. Jones, S. Liu, C.T. Sibley, D.A. Bluemke, T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region, J Cardiovasc Magn Reson. 14 (2012) :27, https://doi.org/10.1186/1532-429X-14-27.
24. H.J.A Crooijmans, K. Scheffler, O. Bieri, Finite RF pulse correction on DESPOT2, Magn Reson Med. 65 (2011) :858-862, https://doi.org/10.1002/mrm.22661.
25. K.N.A Nagel, M.G. Schouten, T. Hambrock, G.J.S. Litjens, C.M.A. Hoeks, B.T. Haken, J.O. Barentsz, J.J. Futterer, Differentiation of Prostatitis and Prostate Cancer by Using Diffusion-weighted MR Imaging and MR-guided Biopsy at 3 T, Radiology. 267 (2013) :164-172, https://doi.org/10.1148/radiol.12111683.
26. T. Tamada, T. Sone, Y. Jo, A. Yamamoto, K. Ito, Diffusion-weighted MRI and its role in prostate cancer, NMR Biomed. 27 (2014) :25-38, https://doi.org/10.1002/nbm.2956.
27. J.I. Epstein, L. Egevad, M.B. Amin, B. Delahunt, J.R. Srigley, P.A. Humphrey, The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System, Am J Surg Pathol. 40 (2016) :244-252, https://doi.org/10.1097/PAS.0000000000000530.
28. S. Mirinae, R.J. Kyu, J. Geon-Ho, S. Yu-Mee, R.S. Jung, O. Jang-Hoon, W, Kyu-Yeoun, Estimation of T2* Relaxation Time of Breast Cancer: Correlation with Clinical, Imaging and Pathological Features, Korean J Radiol. 18 (2017) :238-248, https://doi.org/10.3348/kjr.2017.18.1.238.
29. L. Liu, B. Yin, K. Shek, D. Geng, Y. Lu, J. Wen, X. Kuai, W. Peng, Role of quantitative analysis of T2 relaxation time in differentiating benign from malignant breast lesions. J Int Med Res. 46 (2018) :1928-1935, https://doi.org/10.1177/0300060517721071.
30. R. Renard Penna, G. Cancel-Tassin, E. Comperat, P. Mozer, P. Léon, J. Varinot, M. Roupret, M.O. Bitker, O. Lucidarme, O. Cussenot, Apparent diffusion coefficient value is a strong predictor of unsuspected aggressiveness of prostate cancer before radical prostatectomy, World J Urol. 34 (2016) :1389-1395, https://doi.org/10.1007/s00345-016-1789-3.
31. I. Jambor, M. Pesola, H. Merisaari, P. Taimen, P.J. Boström, T. Liimatainen, H.J. Aronen, Relaxation along fictitious field, diffusion-weighted imaging, and T2 mapping of prostate cancer: Prediction of cancer aggressiveness, Magn Reson Med. 75 (2016) :2130-2140, https://doi.org/10.1002/mrm.25808.
32. W. Liu, X.H. Liu, W. Tang, H.B. Gao, B.N. Zhou, L.P. Zhou, Histogram analysis of stretched-exponential and monoexponential diffusion-weighted imaging models for distinguishing low and intermediate/high gleason scores in prostate carcinoma, J Magn Reson Imaging. 48(2018) :491-498, https://doi.org/10.1002/jmri.25958.
33. A.M. Betts, J.L. Leach, B.V. Jones, B. Zhang, S. Serai,Brain imaging with synthetic MR in children: clinical quality assessment, Neuroradiology, 58 (2016) :1017-1026, https://doi.org/10.1007/s00234-016-1723-9.
34. S.M. Lee, Y.H. Choi, J.E. Cheon, I.O. Kim, S.H. Cho, W.H. Kim, H.J. Kim, H.H. Cho, S.K. You, S.H. Park, M.J. Hwang, Image quality at synthetic brain magnetic resonance imaging in children, Pediatr Radiol. 47 (2017) :1638-1647, https://doi.org/10.1007/s00247-017-3913-y.