This work presents a functional MRI model to study the activation of central auditory pathways in a pig model at 1.5T. The conventional pig is a good model due to its anatomical similarity to humans, and therefore could be relevant to study and understand brain responses to auditory stimulations.
1. Gantz BJ, Turner C, Gfeller KE, Lowder MW. Preservation of Hearing in Cochlear Implant Surgery: Advantages of Combined Electrical and Acoustical Speech Processing: The Laryngoscope. mai 2005;115(5):796‑802.
2. Hoffstetter M, Lugauer F, Kundu S, Wacker S, Perea-Saveedra H, Lenarz T, et al. Middle ear of human and pig: a comparison of structures and mechanics. Biomed Tech Eng. 1 janv 2011;56(3):159‑65.
3. Lovell JM, Harper GM. The morphology of the inner ear from the domestic pig (Sus scrofa). J Microsc. déc 2007;228(3):345‑57.
4. Coquery N, Meurice P, Janvier R, Bobillier E, Quellec S, Fu M, et al. fMRI-Based Brain Responses to Quinine and Sucrose Gustatory Stimulation for Nutrition Research in the Minipig Model: A Proof-of-Concept Study. Front Behav Neurosci. 24 juill 2018;12:151.
5. Coquery N, Menneson S, Meurice P, Janvier R, Etienne P, Noirot V, et al. fMRI‐Based Brain Responses to Olfactory Stimulation with Two Putatively Orexigenic Functional Food Ingredients at Two Different Concentrations in the Pig Model. J Food Sci. sept 2019;84(9):2666‑73.
6. Fang M, Li J, Rudd JA, Wai SM, Yew JCC, Yew DT. fMRI Mapping of cortical centers following visual stimulation in postnatal pigs of different ages. Life Sci. févr 2006;78(11):1197‑201.
7. Guo W, Yi H, Ren L, Chen L, Zhao L, Sun W, et al. The Morphology and Electrophysiology of the Cochlea of the Miniature Pig: Morphology and Electrophysiology of the Cochlea. Anat Rec. mars 2015;298(3):494‑500.
8. Heffner RS, Heffner HE. Hearing in domestic pigs (Sus scrofa) and goats (capra hircus). Hear Res 48:231-240
9. Saikali S, Meurice P, Sauleau P, Eliat P-A, Bellaud P, Randuineau G, et al. A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J Neurosci Methods. sept 2010;192(1):102‑9.
10. Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B. Event-Related fMRI of the Auditory Cortex. Neuroimage. 10,417-429.
11. Bach J-P, Lüpke M, Dziallas P, Wefstaedt P, Uppenkamp S, Seifert H, et al. Auditory functional magnetic resonance imaging in dogs – normalization and group analysis and the processing of pitch in the canine auditory pathways. BMC Vet Res. déc 2016;12(1):32.
12. Brown TA, Gati JS, Hughes SM, Nixon PL, Menon RS, Lomber SG. Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI. J Vis Exp. 19 févr 2014;(84):50872.
13. Seifritz E, Di Salle F, Esposito F, Herdener M, Neuhoff JG, Scheffler K. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. NeuroImage. févr 2006;29(3):1013‑22.
14. Scheich H, Baumgart F, Gaschler‐Markefski B, Tegeler C, Tempelmann C, Heinze HJ, et al. Functional magnetic resonance imaging of a human auditory cortex area involved in foreground–background decomposition. Eur J Neurosci. févr 1998;10(2):803‑9.
15. Ruebhausen MR, Brozoski TJ, Bauer CA. A comparison of the effects of isoflurane and ketamine anesthesia on auditory brainstem response (ABR) thresholds in rats. Hear Res. mai 2012;287(1‑2):25‑9.
16. Stronks HC, Aarts MCJ, Klis SFL. Effects of isoflurane on auditory evoked potentials in the cochlea and brainstem of guinea pigs. Hear Res. févr 2010;260(1‑2):20‑9.
17. Rojas MJ, Navas JA, Greene SA, Rector DM. Discrimination of Auditory Stimuli during Isoflurane Anesthesia. 2008. Comp Med. 58(5):4554-457.
Fig 1. Block design stimulus presentation. (A) Paradigm 1 [single pure tone stimuli]: one each of the 3 frequencies 250, 3000 et 8000Hzwas presented during 30sec alternating with 30sec of silent, repeated 20 times. (B) Paradigm 2 [multiple pure tone stimuli]: all the 3 frequencies and silent were randomly presented during 15 sec, repeated 40 times. (C) Paradigm 3 [vocal sound stimulation]: all the 4 pig sounds and silent were randomly presented during 15 sec, repeated 40 times.
Fig 2. Proof-of-concept: auditory pathways activation. (A) Maps of brain BOLD responses to acoustic stimulation (all frequencies / all pure tone paradigm): p-value threshold = 0.05, k > 108. (B) SVC-based statistics: Related regions of interest (ROIs) with uncorrected p-value that reached the criteria of p < 0,0035 after Bonferroni correction.
Z: coronal slice in mm. L: left side / R: right side. k: cluster size (number of voxels). T: statistical value of the peak. x,y,z: peak’s coordinates.
Fig 3. Pure tone stimulation. (A) Maps of brain BOLD responses to single acoustic stimulation at 250 Hz, 3000 Hz and 8000 Hz [paradigm 1]: p-value threshold = 0.05, k > 108. (B) Maps of brain BOLD responses to multiple acoustic stimulation at 250 Hz, 3000 Hz and 8000 Hz [paradigm 2]: p-value threshold = 0.05, k > 108. (C) SVC-based statistics: ROIs with uncorrected p-value that reached the criteria of p < 0,0035 after Bonferroni correction.
Z: coronal slice in mm. L: left side / R: right side. k: cluster size (number of voxels). T: statistical value of the peak. x,y,z: peak’s coordinates.
Fig 4. Vocal sound stimulation (A) Maps of brain BOLD responses to vocal sound stimulation [paradigm 3]: p-value threshold = 0.05, k > 108. (B) SVC-based statistics: ROIs with uncorrected p-value that reached the criteria of p < 0,0035 after Bonferroni correction.
Z: coronal slice in mm. L: left side / R: right side. k: cluster size (number of voxels). T: statistical value of the peak. x,y,z: peak’s coordinates.