We developed a novel, microstructure-based, voxel-wise map of the peritumoral region in glioma brain tumors using DTI-based free water volume fraction map and deep-learning. This novel map captures the infiltrative heterogeneity of peritumoral region and can differentiate between gliomas with distinct IDH1 mutation status (IDH-mutant vs. IDH-wildtype). Thus, this new derived map that incorporates microstructure information can be used as a new diffusion based radiomic feature for various oncological investigations involving mutation status.
[1] Y.-Z. Chang, G.-Z. Li, B. Pang, K.-N. Zhang, X.-H. Zhang, Y.-Z. Wang, et al., "Transcriptional characteristics of IDH-wild type glioma subgroups highlight the biological processes underlying heterogeneity of IDH-wild type WHO grade IV gliomas," Frontiers in cell and developmental biology, vol. 8, p. 1132, 2020.
[2] D. N. Louis, A. Perry, P. Wesseling, D. J. Brat, I. A. Cree, D. Figarella-Branger, et al., "The 2021 WHO classification of tumors of the central nervous system: a summary," Neuro-oncology, vol. 23, pp. 1231-1251, 2021.
[3] S. Bakas, S. Rathore, M. Nasrallah, H. Akbari, Z. Binder, S. M. Ha, et al., "Nimg-40. Non-invasive in vivo signature of idh1 mutational status in high grade glioma, from clinically-acquired multi-parametric magnetic resonance imaging, using multivariate machine learning," Neuro-Oncology, vol. 20, pp. vi184-vi185, 2018.
[4] S. Nalawade, G. K. Murugesan, M. Vejdani-Jahromi, R. A. Fisicaro, C. G. B. Yogananda, B. Wagner, et al., "Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning," Journal of Medical Imaging, vol. 6, p. 046003, 2019.
[5] D. Alis, O. Bagcilar, Y. D. Senli, M. Yergin, C. Isler, N. Kocer, et al., "Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas," Japanese journal of radiology, vol. 38, pp. 135-143, 2020.
[6] C. De Looze, A. Beausang, J. Cryan, T. Loftus, P. G. Buckley, M. Farrell, et al., "Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status," Journal of neuro-oncology, vol. 139, pp. 491-499, 2018.
[7] C. G. Bangalore Yogananda, B. R. Shah, M. Vejdani-Jahromi, S. S. Nalawade, G. K. Murugesan, F. F. Yu, et al., "A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas," Neuro-oncology, vol. 22, pp. 402-411, 2020.
[8] S. Bisdas, J. Yuan, L. Mancini, and D. Roettger, "Can diffusion tensor MR imaging identify glioma IDH mutation status?," Annals of Oncology, vol. 29, p. viii129, 2018.
[9] Y. Park, K. Han, S. Ahn, Y. Choi, J. Chang, S. Kim, et al., "Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas," American Journal of Neuroradiology, vol. 39, pp. 693-698, 2018.
[10] Z. R. Samani, D. Parker, R. Wolf, W. Hodges, S. Brem, and R. Verma, "Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases," Scientific Reports, vol. 11, p. 14469, 2021/07/14 2021.
[11] Z. R. Samani, D. Parker, J. A. Alappatt, S. Brem, and R. Verma, "Deep learning-based peritumoral microstructure mapping in glioblastomas using free water volume fraction," in NEURO-ONCOLOGY, 2020, pp. 158-158.
[12] S. Lee, S. H. Choi, I. Ryoo, T. J. Yoon, T. M. Kim, S.-H. Lee, et al., "Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging," Journal of neuro-oncology, vol. 121, pp. 141-150, 2015.
[13] K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon, et al., "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation," Medical image analysis, vol. 36, pp. 61-78, 2017.
[14] D. Parker, A. A. Ould Ismail, R. Wolf, S. Brem, S. Alexander, W. Hodges, et al., "Freewater estimatoR using iNtErpolated iniTialization (FERNET): Characterizing peritumoral edema using clinically feasible diffusion MRI data," Plos one, vol. 15, p. e0233645, 2020.
[15] S. L. Di Jia, D. Li, H. Xue, D. Yang, and Y. Liu, "Mining TCGA database for genes of prognostic value in glioblastoma microenvironment," Aging (Albany NY), vol. 10, p. 592, 2018.