Spinocerebellar ataxias are rare inherited neurodegenerative diseases that cause degeneration in the cerebellum and brainstem. The multi-site READISCA clinical trial readiness study aims to validate MR biomarkers at early stages of SCA1 and SCA3. SCA gene carriers (including individuals at pre-ataxic and ataxic stage) and matched controls (total N=107) were scanned at 3T to obtain structural and diffusion MRI and MR spectroscopy. Medulla, pons, and cerebellar peduncles were the earliest sites of involvement in both SCAs. Neurochemical and microstructural abnormalities were detected with very high sensitivity (AUC>0.9 in ROC analyses) prior to ataxia onset.
1. Ashizawa, T., et al., Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis, 2013. 8: p. 177.
2. Jacobi, H., et al., The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology, 2011. 77(11): p. 1035-41.
3. Bird, T.D., Hereditary Ataxia Overview, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
4. Ashizawa, T., G. Oz, and H.L. Paulson, Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol, 2018. 14(10): p. 590-605.
5. Rubinsztein, D.C. and H.T. Orr, Diminishing return for mechanistic therapeutics with neurodegenerative disease duration?: There may be a point in the course of a neurodegenerative condition where therapeutics targeting disease-causing mechanisms are futile. Bioessays, 2016. 38(10): p. 977-80.
6. Schulz, J.B., et al., Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage, 2010. 49(1): p. 158-68.
7. Reetz, K., et al., Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain, 2013. 136(Pt 3): p. 905-17.
8. Adanyeguh, I.M., et al., Autosomal dominant cerebellar ataxias: Imaging biomarkers with high effect sizes. Neuroimage Clin, 2018. 19: p. 858-867.
9. Deelchand, D.K., et al., Sensitivity of Volumetric Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy to Progression of Spinocerebellar Ataxia Type 1. Mov Disord Clin Pract, 2019. 6(7): p. 549-558.
10. Park, Y.W., et al., Assessment of Cerebral and Cerebellar White Matter Microstructure in Spinocerebellar Ataxias 1, 2, 3, and 6 Using Diffusion MRI. Front Neurol, 2020. 11: p. 411.
11. Oz, G., et al., Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord, 2010. 25(9): p. 1253-1261.
12. Oz, G., et al., Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum, 2011. 10(2): p. 208-17.
13. Rezende, T.J.R., et al., Structural signature of SCA3: From presymptomatic to late disease stages. Ann Neurol, 2018. 84(3): p. 401-408.
14. Nigri, A., et al., Spinocerebellar Ataxia Type 1: One-Year Longitudinal Study to Identify Clinical and MRI Measures of Disease Progression in Patients and Presymptomatic Carriers. Cerebellum, 2021.
15. Faber, J., et al., Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3. Mov Disord, 2021. 36(10): p. 2273-2281.
16. Joers, J.M., et al., Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann Neurol, 2018. 83(4): p. 816-829.
17. Oz, G., et al., Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci, 2010. 30(10): p. 3831-8.
18. Emir, U.E., et al., Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1. J Neurochem, 2013. 127(5): p. 660-668.
19. Deelchand, D.K., et al., Prospective motion and B0 shim correction for MR spectroscopy in human brain at 7T. Magn Reson Med, 2019. 82(6): p. 1984-1992.
20. Backhausen, L.L., et al., Quality Control of Structural MRI Images Applied Using FreeSurfer-A Hands-On Workflow to Rate Motion Artifacts. Front Neurosci, 2016. 10: p. 558.
21. Glasser, M.F., et al., The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage, 2013. 80: p. 105-24.
22. Bastiani, M., et al., Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neuroimage, 2019. 185: p. 750-763.
23. Deelchand, D.K., MRspa: Magnetic Resonance signal processing and analysis. 2016, https://www.cmrr.umn.edu/downloads/mrspa/: Minneapolis, Minnesota, U.S.A.
24. Fischl, B., et al., Sequence-independent segmentation of magnetic resonance images. Neuroimage, 2004. 23 Suppl 1: p. S69-84.
25. Iglesias, J.E., et al., Bayesian segmentation of brainstem structures in MRI. Neuroimage, 2015. 113: p. 184-95.
26. Romero, J.E., et al., CERES: A new cerebellum lobule segmentation method. Neuroimage, 2017. 147: p. 916-924.