In this work, we demonstrate that the MEDUSA simulator can be used to create huge collections of brain white matter tissue microstructure samples in the frame of large-scale HPC simulation campaigns and how these Big Data could serve the design of novel computational models able to decode white matter microstructure.
1. Hall, M. G., & Alexander, D. C. (2009). Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI. IEEE transactions on medical imaging,28(9), 1354-1364.
2. Yeh, C. H., Schmitt, B., Le Bihan, D., Li-Schlittgen, J. R., Lin, C. P., & Poupon, C.(2013). Diffusion microscopist simulator: a general Monte Carlo simulation system fordiffusion magnetic resonance imaging. PloS one, 8(10), e76626.
3. Neher, P. F., Laun, F. B., Stieltjes, B., & Maier‐Hein, K. H. (2014). Fiberfox: facilitating the creation of realistic white matter software phantoms. Magnetic Resonance in Medicine, 72(5), 1460-1470.
4. Ginsburger, K., Poupon, F., Beaujoin, J., Estournet, D., Matuschke, F., Mangin, J. F.,... & Poupon, C. (2018). Improving the realism of white matter numerical phantoms: astep toward a better understanding of the influence of structural disorders in diffusion MRI. Frontiers in Physics, 6, 12.
5. Ginsburger, K., Matuschke, F., Poupon, F., Mangin, J. F., Axer, M., & Poupon, C.(2019). MEDUSA: A GPU-based tool to create realistic phantoms of the brainmicrostructure using tiny spheres. NeuroImage, 193, 10-24.
6. Rensonnet, G., Scherrer, B., Girard, G., Jankovski, A., Warfield, S. K., Macq, B., ... &Taquet, M. (2019). Towards microstructure fingerprinting: estimation of tissueproperties from a dictionary of Monte Carlo diffusion MRI simulations. NeuroImage,184, 964-980.
7. Rafael-Patino, J., Romascano, D., Ramirez-Manzanares, A., Canales-Rodríguez, E.J., Girard, G., & Thiran, J. P. (2020). Robust Monte-Carlo simulations indiffusion-MRI: Effect of the substrate complexity and parameter choice on the reproducibility of results. Frontiers in neuroinformatics, 14, 8.
8. Kerkelä, L., Nery, F., Hall, M. G., & Clark, C. A. (2020). Disimpy: A massively parallel Monte Carlo simulator for generating diffusion-weighted MRI data in Python. Journalof Open Source Software, 5(52), 2527.
9. Reuter, J. A., Matuschke, F., Menzel, M., Schubert, N., Ginsburger, K., Poupon, C., ...& Axer, M. (2019). FAConstructor: an interactive tool for geometric modeling of nervefiber architectures in the brain. International journal of computer assisted radiologyand surgery, 14(11), 1881-1889.
10. Callaghan, R., Alexander, D. C., Palombo, M., & Zhang, H. (2020). ConFiG:Contextual Fibre Growth to generate realistic axonal packing for diffusion MRIsimulation. Neuroimage, 220, 117107.
11. MEDUSA:https://framagit.org/cpoupon/gkg/-/tree/master/simulation/src/plugin/gkg-simulation-plugin-functors/Medusa12. Edwards, H. C., & Trott, C. R. (2013, August). Kokkos: Enabling performance portability across many core architectures. In 2013 Extreme Scaling Workshop (xsw2013) (pp. 18-24). IEEE.
13. Lee, H. H., Jespersen, S. N., Fieremans, E., & Novikov, D. S. (2020). The impact of realistic axonal shape on axon diameter estimation using diffusion MRI. NeuroImage,223, 117228.