Magnetic Resonance Fingerprinting (MRF) accelerates quantitative magnetic resonance imaging. The reconstruction can be separated into two problems: reconstruction of a set of multi-contrast images from k-space signals, and estimation of parametric maps from the set of multi-contrast images. In this study we focus on the former problem, while leveraging dictionary matching for the estimation of parametric maps. Two different sparsity promoting regularisation strategies were investigated: contrast-wise Total Variation (TV) which encourages image sparsity separately; and Total Nuclear Variation (TNV) which promotes a measure of joint edge sparsity. We found improved results using joint sparsity.
1. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. In Physica D: Nonlinear Phenomena (Vol. 60, Issues 1–4, pp. 259–268). Elsevier BV. https://doi.org/10.1016/0167-2789(92)90242-f
2. Arridge, S. R., Ehrhardt, M. J., & Thielemans, K. (2021). (An overview of) Synergistic reconstruction for multimodality/multichannel imaging methods. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 379, Issue 2200, p. 20200205). The Royal Society. https://doi.org/10.1098/rsta.2020.0205
3. Rigie, D. S., & La Rivière, P. J. (2015). Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization. In Physics in Medicine and Biology (Vol. 60, Issue 5, pp. 1741–1762). IOP Publishing. https://doi.org/10.1088/0031-9155/60/5/1741
4. Duran, J., Moeller, M., Sbert, C., & Cremers, D. (2016). Collaborative Total Variation: A General Framework for Vectorial TV Models. In SIAM Journal on Imaging Sciences (Vol. 9, Issue 1, pp. 116–151). Society for Industrial & Applied Mathematics (SIAM). https://doi.org/10.1137/15m102873x
5. Bustin, A., Lima da Cruz, G., Jaubert, O., Lopez, K., Botnar, R. M., & Prieto, C. (2019). High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI. In Magnetic Resonance in Medicine (Vol. 81, Issue 6, pp. 3705–3719). Wiley. https://doi.org/10.1002/mrm.27694
6. Aubert-Broche, B., Evans, A. C., & Collins, L. (2006). A new improved version of the realistic digital brain phantom. In NeuroImage (Vol. 32, Issue 1, pp. 138–145). Elsevier BV. https://doi.org/10.1016/j.neuroimage.2006.03.052
7. Aubert-Broche, B., Griffin, M., Pike, G. B., Evans, A. C., & Collins, D. L. (2006). Twenty New Digital Brain Phantoms for Creation of Validation Image Data Bases. In IEEE Transactions on Medical Imaging (Vol. 25, Issue 11, pp. 1410–1416). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tmi.2006.883453
8. Weigel, M. (2014). Extended phase graphs: Dephasing, RF pulses, and echoes - pure and simple. In Journal of Magnetic Resonance Imaging (Vol. 41, Issue 2, pp. 266–295). Wiley. https://doi.org/10.1002/jmri.24619
9. Gómez, P. A., Cencini, M., Golbabaee, M., Schulte, R. F., Pirkl, C., Horvath, I., Fallo, G., Peretti, L., Tosetti, M., Menze, B. H., & Buonincontri, G. (2020). Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging. In Scientific Reports (Vol. 10, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-020-70789-2
10. Fessler, J. A., & Sutton, B. P. (2003). Nonuniform Fast Fourier Transforms using min-max interpolation. In IEEE Transactions on Signal Processing (Vol. 51, Issue 2, pp. 560–574). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tsp.2002.807005
11. McGivney, D. F., Pierre, E., Ma, D., Jiang, Y., Saybasili, H., Gulani, V., & Griswold, M. A. (2014). SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain. In IEEE Transactions on Medical Imaging (Vol. 33, Issue 12, pp. 2311–2322). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tmi.2014.2337321
12. Assländer, J., Cloos, M. A., Knoll, F., Sodickson, D. K., Hennig, J., & Lattanzi, R. (2017). Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. In Magnetic Resonance in Medicine (Vol. 79, Issue 1, pp. 83–96). Wiley. https://doi.org/10.1002/mrm.26639
13. Chambolle, A., & Pock, T. (2010). A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. In Journal of Mathematical Imaging and Vision (Vol. 40, Issue 1, pp. 120–145). Springer Science and Business Media LLC. https://doi.org/10.1007/s10851-010-0251-1
14. Golbabaee, M., Buonincontri, G., Pirkl, C. M., Menzel, M. I., Menze, B. H., Davies, M., & Gómez, P. A. (2021). Compressive MRI quantification using convex spatiotemporal priors and deep encoder-decoder networks. In Medical Image Analysis (Vol. 69, p. 101945). Elsevier BV. https://doi.org/10.1016/j.media.2020.101945
15. Mazor, G., Weizman, L., Tal, A., & Eldar, Y. C. (2018). Low-rank magnetic resonance fingerprinting. In Medical Physics (Vol. 45, Issue 9, pp. 4066–4084). Wiley. https://doi.org/10.1002/mp.13078
The colours correspond to blue: total variation and red: total nuclear variation. The lowest error for TV and TNV was with $$$\epsilon=\sqrt{30}$$$ and $$$\epsilon=\sqrt{35}$$$ respectively. The data-fitting value gives an indication of the (inverse of) the regularisation strength. The mean squared error (MSE) is of the corresponding parametric maps on the whole brain.
Mean squared error (MSE) results on white and gray matter with best performing TV and TNV regularisation, $$$\epsilon=\sqrt{30}$$$ and $$$\epsilon=\sqrt{35}$$$ respectively.