We propose a method to generate a super-resolution QSM from three orthogonal 2D EPI acquisitions with anisotropic voxels. Using distortion correction and non-linear co-registration of the individual EPI images with thick slices, a super-resolution EPI image with isotropic voxels was generated and used to compute a QSM. The super-resolution 2D EPI susceptibility maps, as well as the susceptibility values within deep grey matter structures, showed close correspondence to a standard GRE QSM. The net acquisition time was, however, reduced from several minutes to several seconds, allowing QSM in problematic patient cohorts and clinical routine.
1. Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med. 2009;62(6):1510-1522.
2. Langkammer C, Schweser F, Krebs N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage. 2012;62(3):1593-1599. doi:10.1016/j.neuroimage.2012.05.049
3. Ravanfar P, Loi SM, Syeda WT, et al. Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front Neurosci. 2021;15. doi:10.3389/fnins.2021.618435
4. Sun H, Wilman AH. Quantitative susceptibility mapping using single-shot echo-planar imaging: Echo-Planar Quantitative Susceptibility Mapping. Magn Reson Med. 2015;73(5):1932-1938. doi:10.1002/mrm.25316
5. Sun H, Seres P, Wilman AH. Structural and functional quantitative susceptibility mapping from standard fMRI studies: QSM from fMRI studies. NMR Biomed. 2017;30(4):e3619. doi:10.1002/nbm.3619
6. Karsa A, Punwani S, Shmueli K. The effect of low resolution and coverage on the accuracy of susceptibility mapping. Magn Reson Med. 2019;81(3):1833-1848. doi:10.1002/mrm.27542
7. Langkammer C, Bredies K, Poser BA, et al. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. Neuroimage. 2015;111:622-630. doi:10.1016/j.neuroimage.2015.02.041
8. Tourell M, Stewart A, Jin J, et al. Clinical viable QSM using accelerated, segmented 3D EPI with inline, automated QSM post-processing. In: Proceedings of the 28th Annual Meeting of ISMRM. Virtual Conference 2020. #3221
9. Fiat D. Method of enhancing an MRI signal. US patent US 6,294,914 B1. Published online September 25, 2001. Accessed December 27, 2017. http://www.google.com/patents/US6294914
10. Greenspan H, Oz G, Kiryati N, Peled S. MRI inter-slice reconstruction using super-resolution. Magn Reson Imaging. 2002;20(5):437-446.
11. Peled S, Yeshurun Y. Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med. 2001;45(1):29-35. doi:10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z
12. Peeters RR, Kornprobst P, Nikolova M, et al. The use of super-resolution techniques to reduce slice thickness in functional MRI. Int J Imaging Syst Technol. 2004;14(3):131-138. doi:10.1002/ima.20016
13. Shilling RZ, Robbie TQ, Bailloeul T, Mewes K, Mersereau RM, Brummer ME. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans Med Imaging. 2009;28(5):633-644. doi:10.1109/TMI.2008.2007348
14. Plenge E, Poot DHJ, Bernsen M, et al. Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magn Reson Med. 2012;68(6):1983-1993. doi:10.1002/mrm.24187
15. Grabner G, Dal-Bianco A, Hametner S, Lassmann H, Trattnig S. Group specific vein-atlasing: An application for analyzing the venous system under normal and multiple sclerosis conditions. J Magn Reson Imaging. Published online October 22, 2013. doi:10.1002/jmri.24393
16. Bollmann S, Bollmann S, Puckett A, Janke A, Barth M. Non-linear Realignment Using Minimum Deformation Averaging for Single-subject fMRI at Ultra-high Field. In: Proceedings of the 25th Annual Meeting of ISMRM. Hawaii, USA, 2017. #5338
17. https://github.com/CAIsr/volgenmodel-nipype.
18. Dymerska B, Poser BA, Barth M, Trattnig S, Robinson SD. A method for the dynamic correction of B0-related distortions in single-echo EPI at 7T. NeuroImage. 2016;doi:10.1016/j.neuroimage.2016.07.009. doi:10.1016/j.neuroimage.2016.07.009
19. https://github.com/BIC-MNI/minc-tools.
20. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825-841.
21. Dymerska B, Eckstein K, Bachrata B, et al. Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magn Reson Med. 2021;85(4):2294-2308. doi:https://doi.org/10.1002/mrm.28563
22. https://github.com/korbinian90/ROMEO.
23. Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage. 2011;54(4):2789-2807. doi:10.1016/j.neuroimage.2010.10.070
24. Li W, Wang N, Yu F, et al. A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. NeuroImage. 2015;108:111-122. doi:10.1016/j.neuroimage.2014.12.043
25. Chan K-S, Marques JP. SEPIA-Susceptibility mapping pipeline tool for phase images. NeuroImage. 2020;227:117611. doi:10.1016/j.neuroimage.2020.117611
Figure 1: Comparison of magnitude images (upper row) and susceptibility maps (lower row) between the original acquired high-resolution (HR) GRE (column 1), the individual, simulated LR images (columns 2-4), and the reconstructed super-resolution (SR) GRE (column 5) using non-linear co-registration with volgenmodel. Note the improvement in structure delineation in the SR images compared to the LR images, but also some residual blurring compared to the original HR images.
Figure 2: Comparison of magnitude images (upper row) and susceptibility maps (lower row) between the reference acquired high-resolution (HR) EPI (column 1), the individual orthogonal LR images (columns 2-4) and the reconstructed super-resolution (SR) EPI (column 5) using non-linear co-registration with volgenmodel. Note the improvement in structure delineation in the SR images compared to the LR images, the increased SNR of the SR compared to the reference HR image, but also some residual blurring.
Figure 3: Comparison of super-resolution (SR) EPI images reconstructed using only linear (column 4) or non-linear co-registration with volgenmodel (column 5) without (upper row) and with (lower row) distortion correction (DC). Using a linear approach and no DC results in a significant blurring (red arrows) in the areas of large distortions (see positions w.r.t. reference lines), e.g. frontal areas and brainstem, which is reduced with DC. With non-linear registration, the excessive blurring is eliminated even without DC, but DC allows the generation of a distortion-free SR image.
Figure 4: Comparison of susceptibility maps between the reference high-resolution (HR) GRE and the reconstructed super-resolution (SR) EPI using non-linear co-registration with volgenmodel. Note the similarity between the QSMs, but also some residual blurring in the SR EPI susceptibility map.
Figure 5: Comparison of susceptibility values between the reference high-resolution GRE and the reconstructed super-resolution EPI using non-linear co-registration with volgenmodel. The boxplots show the susceptibility values over 14 ROIs localized in deep grey matter structures, and the * marks the statistically significant differences (using Wilcoxon rank-sum test at p = 0.05, corrected for multiple comparisons using Bonferroni correction).