We develop a protocol adaptive Stacked transfer learning (STL) U-NET for soft tissue segmentation in dynamic speech MRI. Our approach leverages knowledge from large open-source datasets, and only needs to be trained on small number of protocol specific images (of the order of 20 images). We demonstrate the utility of STL U-NET in efficiently segmenting soft-tissue articulators from three different protocols with different field strengths, vendors, acquisition, reconstruction. Using the DICE similarity metric, we demonstrate segmentation accuracies with our approach to be at the level of manual segmentation.
1. Erattakulangara, S., and Lingala, S.G. (2020). Airway segmentation in speech MRI using the U-net architecture. In Proceedings - International Symposium on Biomedical Imaging (IEEE Computer Society), pp. 1887–1890.
2. Erattakulangara, S., and Lingala, S.G. U-net based automatic segmentation of the vocal tract airspace in speech MRI.
3. Ruthven, M., Miquel, M.E., and King, A.P. (2021). Deep-learning-based segmentation of the vocal tract and articulators in real-time magnetic resonance images of speech. Computer Methods and Programs in Biomedicine 198.
4. Sorensen, T., Skordilis, Z., Toutios, A., Kim, Y.C., Zhu, Y., Kim, J., Lammert, A., Ramanarayanan, V., Goldstein, L., Byrd, D., et al. (2017). Database of volumetric and real-time vocal tract MRI for speech science. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH (International Speech Communication Association), pp. 645–649.
5. Isaieva, K., Laprie, Y., Leclère, J., Douros, I.K., Felblinger, J., and Vuissoz, P.A. (2021). Multimodal dataset of real-time 2D and static 3D MRI of healthy French speakers. Scientific Data 8.
6. Rusho, R.Z., Alam, W., Ahmed, A.H., Kruger, S.J., Jacob, M., Goud, S., Roy, L., and Carver, J. Rapid dynamic speech imaging at 3Tesla using combination of a custom airway coil, variable density spirals and manifold regularization.
7. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging 34, 1993–2024.
8.Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., et al. (2018). Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge.
9. ISLES challenge (2018) http://www.isles-challenge.org/ISLES2018/.
10. ISLES challenge (2017) http://www.isles-challenge.org/ISLES2017/.
11. BRATS challenge (2018) https://www.med.upenn.edu/sbia/brats2018.html.
12. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
13. Bertels, J., Eelbode, T., Berman, M., Vandermeulen, D., Maes, F., Bisschops, R., and Blaschko, M. (2019). Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory & Practice.