MR lymphangiography (MRL) utilizing the clinically available small molecular weight gadolinium contrast agents suffers from diffusion of contrast out of the lymphatic system and into the blood pool. We describe a modified MRL technique where a clinically available iron oxide nanoparticle (ferumoxytol) is used as the lymphatic contrast agent. The higher molecular weight of these nanoparticles results in retention of contrast within the lymphatic system. This simplifies peripheral lymphatic imaging by eliminating the need for vascular contamination suppression techniques and should allow better tracking of contrast through the central lymphatics following pedal injections.
1. Krishnamurthy R, Hernandez A, Kavuk S, Annam A, Pimpalwar S. Imaging the Central Conducting Lymphatics: Initial Experience with Dynamic MR Lymphangiography. Radiology. 2015;274(3):871-878. doi:10.1148/radiol.14131399
2. Ramirez-Suarez KI, Tierradentro-Garcia LO, Smith CL, et al. Dynamic contrast-enhanced magnetic resonance lymphangiography. Pediatr Radiol. Published online April 8, 2021. doi:10.1007/s00247-021-05051-6
3. Lohrmann C, Foeldi E, Bartholomä JP, Langer M. Interstitial MR lymphangiography—A diagnostic imaging method for the evaluation of patients with clinically advanced stages of lymphedema. Acta Tropica. 2007;104(1):8-15. doi:10.1016/j.actatropica.2007.07.001
4. Lohrmann C, Foeldi E, Speck O, Langer M. High-Resolution MR Lymphangiography in Patients with Primary and Secondary Lymphedema. American Journal of Roentgenology. 2006;187(2):556-561. doi:10.2214/AJR.05.1750
5. Ruehm SG, Schroeder T, Debatin JF. Interstitial MR Lymphography with Gadoterate Meglumine: Initial Experience in Humans. Radiology. 2001;220(3):816-821. doi:10.1148/radiol.2203010090
6. Notohamiprodjo M, Baumeister RGH, Jakobs TF, et al. MR-lymphangiography at 3.0T—a feasibility study. Eur Radiol. 2009;19(11):2771-2778. doi:10.1007/s00330-009-1461-z
7. Maki JH, Neligan PC, Briller N, Mitsumori LM, Wilson GJ. Dark Blood Magnetic Resonance Lymphangiography Using Dual-Agent Relaxivity Contrast (DARC-MRL): A Novel Method Combining Gadolinium and Iron Contrast Agents. Current Problems in Diagnostic Radiology. 2016;45(3):174-179. doi:10.1067/j.cpradiol.2015.08.003
8. Lower limb lymphedema staging based on magnetic resonance lymphangiography - ClinicalKey. Accessed October 1, 2021. https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S2213333X21003012?scrollTo=%23bib16
9. DailyMed - FERAHEME- ferumoxytol injection. Accessed September 23, 2021. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=32b0e320-a739-11dc-a704-0002a5d5c51b
10. Nguyen KL, Yoshida T, Kathuria-Prakash N, et al. Multicenter Safety and Practice for Off-Label Diagnostic Use of Ferumoxytol in MRI. Radiology. 2019;293(3):554-564. doi:10.1148/radiol.2019190477
11. Shinaoka A, Koshimune S, Suami H, et al. Lower-Limb Lymphatic Drainage Pathways and Lymph Nodes: A CT Lymphangiography Cadaver Study. Radiology. 2020;294(1):223-229. doi:10.1148/radiol.2019191169
12. Liu W, Dahnke H, Rahmer J, Jordan EK, Frank JA. Ultrashort T2* relaxometry for quantitation of highly concentrated superparamagnetic iron oxide (SPIO) nanoparticle labeled cells. Magn Reson Med. 2009;61(4):761-766. doi:10.1002/mrm.21923
13. Magnitsky S, Zhang J, Idiyatullin D, et al. Positive contrast from cells labeled with iron oxide nanoparticles: Quantitation of imaging data. Magn Reson Med. 2017;78(5):1900-1910. doi:10.1002/mrm.26585
14. Sharma SD, Fischer R, Schoennagel BP, et al. MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: Comparison with SQUID-based biomagnetic liver susceptometry. Magn Reson Med. 2017;78(1):264-270. doi:10.1002/mrm.26358
15. Vasanawala SS, Yu H, Shimakawa A, Jeng M, Brittain JH. Estimation of liver T₂ in transfusion-related iron overload in patients with weighted least squares T₂ IDEAL. Magn Reson Med. 2012;67(1):183-190. doi:10.1002/mrm.22986
Left column gadobenate dimeglumine (top) and ferumoxytol MRL (bottom) injections into the left hoof, note improved visualization of contrast migration with ferumoxytol (orange arrows). Middle column compares SPGR versus UTE sequences after right hoof ferumoxytol injection, note areas of signal loss with longer TE sequence. Right columns SPGR R2* maps (top) and UTE T1w images (bottom) pre and post ferumoxytol administration into the left hoof, note the R2* increase (T2* decrease to 8ms) along ferumoxytol containing channels.
Case 1: Chronic effusions, suspected thoracic duct obstruction, ferumoxytol used due to renal failure. The thoracic duct is continuous. 3D SPGR Dixon TE 1.7 ms (effective). Case 2: Paraspinal mass resection with suspected thoracic duct transection. Sagittal MIP demonstrates thoracic duct continuity. UTE SPAIR TE 0.1ms. Case 3: Prostate cancer with left lower extremity edema, ferumoxytol used due to patient concerns regarding gadolinium. Coronal MIP images demonstrate poor transit of contrast in the left pelvis. 3D SPGR Dixon TE 2.8ms (effective).
Case 4: Post contrast imaging after ferumoxytol injected intradermally into 8 sites in both feet. SPGR and UTE images demonstrate ferumoxytol uptake in the retroperitoneal lymphatics. Pre-contrast R2* measures 83 and 76 sec-1 for the right and left retroperitoneal lymphatics respectively. Postcontrast R2* measures 375 and 496 sec-1 for the right and left retroperitoneal lymphatics respectively demonstrating the quantitative utility of R2* in ION-MRL.