The estimation of structural connectivity from DW-MRI is a challenging task, in part due to false-positive connections. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was organized with the aim of evaluating connectivity methods using large-scale synthetic datasets obtained from DW-MRI Monte-Carlo simulations. The outcome of the challenge suggests that methods selected by the 14 teams participating in the challenge provide both high correlations between estimated and ground-truth connectivity weights and high accuracy in binary connectivity identification. Furthermore, the challenge provided unique data with realistic connectivity and microstructure properties to foster the development of connectivity estimation methods.
1 Jeurissen, B., Descoteaux, M., Mori, S., & Leemans, A. (2017). Diffusion MRI fiber tractography of the brain. NMR in Biomedicine, e3785. https://doi.org/10.1002/nbm.3785
2 Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Côté, M.-A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.-C., Lin, Y.-C., Ji, Q., Reddick, W. E., Glass, J. O., Chen, D. Q., Feng, Y., Gao, C., Wu, Y., Ma, J., Renjie, H., Li, Q., … Descoteaux, M. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 8(1), 1349. https://doi.org/10.1038/s41467-017-01285-x
3 Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A., Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.-F., & Poupon, C. (2011). Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage, 56(1), 220–234. https://doi.org/10.1016/j.neuroimage.2011.01.032
4 Neher, P. F., Laun, F. B., Stieltjes, B., & Maier-Hein, K. H. (2013). Fiberfox: Facilitating the creation of realistic white matter software phantoms. Magnetic Resonance in Medicine. http://www.ncbi.nlm.nih.gov/pubmed/24323973
5 Neher, P. F., Laun, F. B., Stieltjes, B., & Maier-Hein, K. H. (2013). Fiberfox: Facilitating the creation of realistic white matter software phantoms. Magnetic Resonance in Medicine. http://www.ncbi.nlm.nih.gov/pubmed/24323973
6 Close, T. G., Tournier, J.-D., Calamante, F., Johnston, L. A., Mareels, I., & Connelly, A. (2009). A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. NeuroImage, 47(4), 1288–1300. https://doi.org/10.1016/J.NEUROIMAGE.2009.03.077
7 Rafael-Patino, J., Romascano, D., Ramirez-Manzanares, A., Canales-Rodríguez, E. J., Girard, G., & Thiran, J.-P. (2020). Robust Monte-Carlo Simulations in Diffusion-MRI: Effect of the Substrate Complexity and Parameter Choice on the Reproducibility of Results. Frontiers in Neuroinformatics, 14, 8. https://doi.org/10.3389/fninf.2020.00008
8 Lee, H. H., Fieremans, E., & Novikov, D. S. (2021). Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images. Journal of Neuroscience Methods, 350, 109018. https://doi.org/10.1016/j.jneumeth.2020.109018
9 Hall, M. G., & Alexander, D. C. (2009). Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI. IEEE Transactions on Medical Imaging, 28(9), 1354–1364. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4797853
10 Girard, G., Caruyer, E., Rafael-Patino, J., Pizzolato, M., Truffet, R., & Thiran, J.-P. (2021). Diffusion-Simulated Connectivity Challenge. 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). https://doi.org/10.5281/ZENODO.4733450
11 Rafael-Patino, J., Girard, G., Truffet, R., Pizzolato, M., Caruyer, E., & Thiran, J. P. (2021). The diffusion-simulated connectivity (DiSCo) dataset. Data in Brief, 38, 107429. https://doi.org/10.1016/J.DIB.2021.107429
12 Rafael-Patino, J., Girard, G., Truffet, R., Pizzolato, M., Thiran, J.-P., & Caruyer, E. (2021). The Microstructural Features of the Diffusion-Simulated Connectivity (DiSCo) Dataset. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13006 LNCS, 159–170. https://doi.org/10.1007/978-3-030-87615-9_14
13 Caminiti, R., Girard, G., Battaglia-Mayer, A., Borra, E., Schito, A., Innocenti, G. M., & Luppino, G. (2021). The Complex Hodological Architecture of the Macaque Dorsal Intraparietal Areas as Emerging from Neural Tracers and DW-MRI Tractography. ENeuro, 8(4). https://doi.org/10.1523/ENEURO.0102-21.2021
14 Donahue, C. J., Sotiropoulos, S. N., Jbabdi, S., Hernandez-Fernandez, M., Behrens, T. E., Dyrby, T. B., Coalson, T., Kennedy, H., Knoblauch, K., Van Essen, D. C., & Glasser, M. F. (2016). Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey. The Journal of Neuroscience, 36(25), 6758–6770. https://doi.org/10.1523/JNEUROSCI.0493-16.2016
15 Bihan, D. Le, Poupon, C., Amadon, A., & Lethimonnier, F. (2006). Artifacts and pitfalls in diffusion MRI. Journal of Magnetic Resonance Imaging, 24(3), 478–488. https://doi.org/10.1002/JMRI.20683
16 Andersson, M., Kjer, H. M., Rafael-Patino, J., Pacureanu, A., Pakkenberg, B., Thiran, J. P., Ptito, M., Bech, M., Dahl, A. B., Dahl, V. A., & Dyrby, T. B. (2021). Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure–function relationship. Proceedings of the National Academy of Sciences of the United States of America, 117(52), 33649–33659. https://doi.org/10.1073/PNAS.2012533117
17 Veraart, J., Novikov, D. S., Christiaens, D., Ades-aron, B., Sijbers, J., & Fieremans, E. (2016). Denoising of diffusion MRI using random matrix theory. NeuroImage, 142, 394–406. https://doi.org/10.1016/j.neuroimage.2016.08.016
18 Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-smith, I., & Contributors, D. (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 8, 1–5. http://www.frontiersin.org/Journal/10.3389/fninf.2014.00008/abstract
19 Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C. H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137
20 Canales-Rodríguez, E. J., Daducci, A., Sotiropoulos, S. N., Caruyer, E., Aja-Fernández, S., Radua, J., Mendizabal, J. M. Y., Iturria-Medina, Y., Melie-García, L., Alemán-Gómez, Y., Thiran, J. P., Sarró, S., Pomarol-Clotet, E., & Salvador, R. (2015). Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization. PLOS ONE, 10(10), e0138910. https://doi.org/10.1371/JOURNAL.PONE.0138910
21 Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., & Sijbers, J. (2014). Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage, 103, 411–426. https://doi.org/10.1016/j.neuroimage.2014.07.061
22 Baete, S. H., Yutzy, S., & Boada, F. E. (2016). Radial q-space sampling for DSI. Magnetic Resonance in Medicine, 76(3), 769–780. https://doi.org/10.1002/MRM.25917/ASSET/SUPINFO/MRM25917-SUP-0001-SUPPINFO01.PDF
23 Sedlar, S., Papadopoulo, T., Deriche, R., & Deslauriers-Gauthier, S. (2020). Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical U-net. In Computational Diffusion MRI, MICCAI Workshop.
24 Wu, Y., Lin, W., Shen, D., Yap, P.-T., Consortium, U.B.C.P. (2019) Asymmetry Spectrum Imaging for Baby Diffusion Tractography., in: International Conference on Information Processing in Medical Imaging. Springer, pp. 319-331.
25 Tran, Giang, and Yonggang Shi. (2015) Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging." IEEE transactions on medical imaging 34.11, 2320-2332.
26 Coronado-Leija, R., Ramirez-Manzanares, A., & Marroquin, J. L. (2017). Estimation of individual axon bundle properties by a Multi-Resolution Discrete-Search method. Medical Image Analysis, 42, 26–43. https://doi.org/10.1016/J.MEDIA.2017.06.008
27 Yeh, F.C., (2017). Diffusion MRI reconstruction in DSI Studio. Advanced Biomedical MRI Lab, National Taiwan University Hospital. Available online at: http://dsi-studio. labsolver. org/Manual/Reconstruction# TOC-Q-Space-Diffeomorphic-Reconstruction-QSDR
28 Wu, Y., Hong, Y., Ahmad, S., Chang, W. T., Lin, W., Shen, D., & Yap, P. T. (2020). Globally Optimized Super-Resolution of Diffusion MRI Data via Fiber Continuity. Medical Image Computing and Computer-Assisted Intervention, 12267, 260. https://doi.org/10.1007/978-3-030-59728-3_26
29 Aydogan, D. B., & Shi, Y. (2021). Parallel Transport Tractography. IEEE Transactions on Medical Imaging, 40(2), 635–647. https://doi.org/10.1109/TMI.2020.3034038
30 Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2015). SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage, 119, 338–351. https://doi.org/10.1016/j.neuroimage.2015.06.092
31 Ocampo-Pineda, M., Schiavi, S., Rheault, F., Girard, G., Petit, L., Descoteaux, M., & Daducci, A. (2021). Hierarchical Microstructure Informed Tractography. Brain Connectivity, 11(2), 75–88. https://doi.org/10.1089/BRAIN.2020.0907
32 Daducci, A., Dal Palu, A., Lemkaddem, A., & Thiran, J.-P. (2014). COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography. IEEE Transactions on Medical Imaging, 34(1).
33 Fick, R. H. J., Wassermann, D., & Deriche, R. (2019). The Dmipy Toolbox: Diffusion MRI Multi-Compartment Modeling and Microstructure Recovery Made Easy. Frontiers in Neuroinformatics, 13, 64. https://doi.org/10.3389/FNINF.2019.00064/BIBTEX
34 Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., & Basser, P. J. (2008). AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine, 59(6), 1347–1354. https://doi.org/10.1002/mrm.21577
Figure 1. Ground truth 11,032 trajectories of the test dataset in a 3D view (A). The corresponding cross-sectional sections of the dataset are shown in axial (B), sagittal (C) and coronal (D) views. Trajectory segments within 1 mm range of the sections are shown. All trajectories of each of the 26 bundles are shown with a different colour.