During MR-guided cardiac catheter intervention, the catheter may be misaligned due to the respiratory motion of the heart. To improve the myocardial border alignment, GPU-based edge-preserving image registration is developed to accurately align highly undersampled 3D cone-trajectory image-based navigators for motion characterization. The edge-preserving registration technique improved myocardial border alignment across differing spatial resolutions and acceleration factors in-silico.
1. Xu, R., Athavale, P., Nachman, A., & Wright, G. A. (2014). Multiscale registration of real-time and prior MRI data for image-guided cardiac interventions. IEEE transactions on bio-medical engineering, 61(10), 2621–2632. https://doi.org/10.1109/TBME.2014.2324998
2. Xu, R., Athavale, P., Krahn, P., Anderson, K., Barry, J., Biswas, L., Ramanan, V., Yak, N., Pop, M., & Wright, G. A. (2015). Feasibility Study of Respiratory Motion Modeling Based Correction for MRI-Guided Intracardiac Interventional Procedures. IEEE transactions on bio-medical engineering, 62(12), 2899–2910.
3. Xu, R., & Wright, G. A. (2016). GPU accelerated dynamic respiratory motion model correction for MRI-guided cardiac interventions. Computer methods and programs in biomedicine, 136, 31–43. https://doi.org/10.1016/j.cmpb.2016.08.003
4. Ciaccio, E. J., Ashikaga, H., Kaba, R. A., Cervantes, D., Hopenfeld, B., Wit, A. L., Peters, N. S., McVeigh, E. R., Garan, H., & Coromilas, J. (2007). Model of reentrant ventricular tachycardia based on infarct border zone geometry predicts reentrant circuit features as determined by activation mapping. Heart rhythm, 4(8), 1034–1045. https://doi.org/10.1016/j.hrthm.2007.04.015
5. Wissmann, L., Santelli, C., Segars, W. P., & Kozerke, S. (2014). MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance. Journal of cardiovascular magnetic resonance: official journal of the Society for Cardiovascular Magnetic Resonance, 16(1), 63. https://doi.org/10.1186/s12968-014-0063-3
6. Gurney, P. T., Hargreaves, B. A., & Nishimura, D. G. (2006). Design and analysis of a practical 3D cones trajectory. Magnetic resonance in medicine, 55(3), 575–582. https://doi.org/10.1002/mrm.20796
7. Uecker, M., Lai, P., Murphy, M. J., Virtue, P., Elad, M., Pauly, J. M., Vasanawala, S. S., & Lustig, M. (2014). ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magnetic resonance in medicine, 71(3), 990–1001. https://doi.org/10.1002/mrm.24751
8. Tamir JI, Ong F, Cheng JY, Uecker M, Lustig M. (2016) Generalized Magnetic Resonance Image Reconstruction using The Berkeley Advanced Reconstruction Toolbox, ISMRM Workshop on Data Sampling and Image Reconstruction, Sedona
9. Uecker M, Ong F, Tamir JI, Bahri D, Virtue P, Cheng JY, Zhang T, Lustig M. (2015) Berkeley advanced reconstruction toolbox. ISMRM 23rd Annual Meeting & Exhibition, Toronto. Proc. Intl. Soc. Mag. Reson. Med.23, 2486.
10. Uecker M, Virtue P, Ong F, Murphy MJ, Alley MT, Vasanawala SS, Lustig M. (2013) Software Toolbox and Programming Library for Compressed Sensing and Parallel Imaging, ISMRM Workshop on Data Sampling and Image Reconstruction, Sedona
11. Athavale, P., Xu, R., Radau, P., Nachman, A., & Wright, G. A. (2015). Multiscale properties of weighted total variation flow with applications to denoising and registration. Medical image analysis, 23(1), 28–42. https://doi.org/10.1016/j.media.2015.04.013
12. Sandkühler, R., Jud, C., Andermatt, S., & Cattin, P.C. (2018). AirLab: Autograd Image Registration Laboratory. ArXiv, abs/1806.09907.
13. Haber, E., & Modersitzki, J. (2007). Intensity gradient-based registration and fusion of multi-modal images. Methods of information in medicine, 46(3), 292–299. https://doi.org/10.1160/ME9046
14. Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1 Suppl), S61–S72. https://doi.org/10.1016/j.neuroimage.2008.10.040
15. Lowekamp, B. C., Chen, D. T., Ibáñez, L., & Blezek, D. (2013). The Design of SimpleITK. Frontiers in neuroinformatics, 7, 45. https://doi.org/10.3389/fninf.2013.00045
16. Koundinyan, S.P., Cheng, J., Malavé, M.O., Yang, P.C., Hu, B.S., Nishimura, D.G., & Baron, C.A. (2019). Unravelling the Effect of Spatial Resolution and Scan Acceleration on 3D Image-Based Navigators for Respiratory Motion Tracking in Coronary MR Angiography. arXiv: Medical Physics.
17. Malavé, M. O., Baron, C. A., Koundinyan, S. P., Sandino, C. M., Ong, F., Cheng, J. Y., & Nishimura, D. G. (2020). Reconstruction of undersampled 3D non-Cartesian image-based navigators for coronary MRA using an unrolled deep learning model. Magnetic resonance in medicine, 84(2), 800–812. https://doi.org/10.1002/mrm.28177
18. Munoz, C., Qi, H., Cruz, G., Küstner, T., Botnar, R. M., & Prieto, C. (2021). Self-supervised learning-based diffeomorphic non-rigid motion estimation for fast motion-compensated coronary MR angiography. Magnetic resonance imaging, 85, 10–18. Advance online publication. https://doi.org/10.1016/j.mri.2021.10.004