Quantitative DCE-MRI analysis requires fitting a model to the acquired enhancing time-course data. These models involve a convolution operation, which has a variety of possible implementations. The goal of this work was to evaluate three different implementations of the convolution operation: (i) Fourier, (ii) Summation, (iii) Iterative. The accuracy and execution time of each implementation was compared on a virtual phantom. It was found that the iterative technique was the fastest while also having the best overall accuracy.
1. Khalifa, F., Soliman, A., El-Baz, A., Abou El-Ghar, M., El-Diasty, T., Gimelfarb, G., Ouseph, R., & Dwyer, A. C. (2014). Models and methods for analyzing DCE-MRI: A review. Medical Physics, 41(12), 124301. https://doi.org/10.1118/1.4898202
2. Huang, W., Li, X., Chen, Y., Li, X., Chang, M.-C., Oborski, M. J., Malyarenko, D. I., Muzi, M., Jajamovich, G. H., Fedorov, A., Tudorica, A., Gupta, S. N., Laymon, C. M., Marro, K. I., Dyvorne, H. A., Miller, J. V., Barbodiak, D. P., Chenevert, T. L., Yankeelov, T. E., … Kalpathy-Cramer, J. (2014). Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Translational Oncology, 7(1), 153–166. https://doi.org/10.1593/tlo.13838
3. Beuzit, L., Eliat, P.-A., Brun, V., Ferré, J.-C., Gandon, Y., Bannier, E., & Saint-Jalmes, H. (2016). Dynamic contrast-enhanced MRI: Study of inter-software accuracy and reproducibility using simulated and clinical data. Journal of Magnetic Resonance Imaging, 43(6), 1288–1300. https://doi.org/10.1002/jmri.25101
4. Murase, K. (2004). Efficient Method for Calculating Kinetic Parameters Using T 1-Weighted Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Magnetic Resonance in Medicine, 51(4), 858–862. https://doi.org/10.1002/mrm.20022
5. Flouri, D., Lesnic, D., & Sourbron, S. P. (2016). Fitting the two-compartment model in DCE-MRI by linear inversion. Magnetic Resonance in Medicine, 76(3), 998–1006. https://doi.org/10.1002/mrm.25991
6. Ahearn, T. S., Staff, R. T., Redpath, T. W., & Semple, S. I. K. (2005). The use of the Levenberg-Marquardt curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI data. Physics in Medicine and Biology, 50(9), N85–92. https://doi.org/10.1088/0031-9155/50/9/N02
7. Fusco, R., Irccs, G. P., Petrillo, A., & Irccs, G. P. (2014). Performances of Different Algorithms for Tracer Kinetics Parameters Estimation in Breast DCE-MRI. International Journal of Electronics Communication and Computer Engineering, 5(4), 911–916.
8. Kargar, S., Borisch, E. A., Froemming, A. T., Kawashima, A., Mynderse, L. A., Stinson, E. G., Trzasko, J. D., & Riederer, S. J. (2018). Robust and efficient pharmacokinetic parameter non-linear least squares estimation for dynamic contrast enhanced MRI of the prostate. Magnetic Resonance Imaging, 48(December 2017), 50–61. https://doi.org/10.1016/j.mri.2017.12.021
9. Tofts, P. S., Brix, G., Buckley, D. L., L Evelhoch, J., Henderson, E., Knopp, M. V., Larsson, H. B. W., Lee, T.-Y., Mayr, N. a, Parker, G. J. M., Port, R. E., Taylor, J., & Weisskoff, R. M. (1999). Estimating Kinetic Parameters From Dynamic Contrast-Enhanced T1-Weighted MRI of a Diffusable Tracer: Standardized Quantities and Symbols. J Magn Reson Imag, 10(July), 223–232. https://doi.org/10.1002/(SICI)1522-2586(199909)10
10. Barnes, S. R., Ng, T. S. C., Santa-Maria, N., Montagne, A., Zlokovic, B. V., & Jacobs, R. E. (2015). ROCKETSHIP: A flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Medical Imaging, 15(1). https://doi.org/10.1186/s12880-015-0062-3
11. Garpebring, A., & Löfstedt, T. (2018). Parameter estimation using weighted total least squares in the two-compartment exchange model. Magnetic Resonance in Medicine, 79(1), 561–567. https://doi.org/10.1002/mrm.26677
12. Smith, D. S., Li, X., Arlinghaus, L. R., Yankeelov, T. E., & Welch, E. B. (2015). DCEMRI.jl : a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis. PeerJ, 3, e909. https://doi.org/10.7717/peerj.909
13. JuliaDSP. (n.d.). DSP.jl. https://github.com/JuliaDSP/DSP.jl
14. Barbodiak, D. P. (n.d.). QIBA DCE-MRI Virtual Phantoms. https://sites.duke.edu/dblab/qibacontent/
15. Butterworth, E., Jardine, B. E., Raymond, G. M., Neal, M. L., & Bassingthwaighte, J. B. (2014). JSim, an open-source modeling system for data analysis. F1000Research, 2, 288. https://doi.org/10.12688/f1000research.2-288.v3
16. Ortuño, J. E., Ledesma-Carbayo, M. J., Simões, R. V., Candiota, A. P., Arús, C., & Santos, A. (2013). DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinformatics, 14(1), 316. https://doi.org/10.1186/1471-2105-14-316
17. DeGrandchamp, J. B., & Cárdenas-Rodríguez, J. (n.d.). Fitdcemri. https://github.com/JCardenasRdz/fitdcemri
18. QIICR. (n.d.). PkModelling. https://github.com/QIICR/PkModeling
19. Sourbron, S. P. (n.d.). Platform for research in Medical Imaging. https://github.com/plaresmedima/PMI-0.4
20. Welch, E. B. (n.d.). Pydcemri. https://github.com/welcheb/pydcemri
21. Zöllner, F. G., Weisser, G., Reich, M., Kaiser, S., Schoenberg, S. O., Sourbron, S. P., & Schad, L. R. (2013). UMMPerfusion: an Open Source Software Tool Towards Quantitative MRI Perfusion Analysis in Clinical Routine. Journal of Digital Imaging, 26(2), 344–352. https://doi.org/10.1007/s10278-012-9510-6
Table 2: Computation time needed to fit the 30 voxels in the original phantom which had 1321 timepoints along with the downsampled phantom which had 89 timepoints. Among the three non-linear fits (Iterative, Summation, Fourier), the Iterative approach was fastest. For reference, the linear least-squares (LLSQ) fit is included and although it is fast, it is also more sensitive to noise and temporal resolution than non-linear fitting.5