Brain-predicted age difference (brain-PAD; brain-predicted age – chronological age) is a potential biomarker for neurodegenerative diseases, including multiple sclerosis (MS). Previous models generally rely on T1-weighted (T1w) MRI brain scans. Here, we developed a deep-learning brain-age prediction model on FLAIR MRI. Our Inception-ResNet-V2 model was more accurate than a current state-of-the-art architecture and the FLAIR based model is comparable to a T1w MRI model. We used saliency maps, showing that areas such as the thalamus and ventricles are salient for brain-age prediction. We applied the FLAIR model to patients with MS, finding significantly higher brain-PAD compared to healthy controls.
1. Rejdak, K., Jackson, S. and Giovannoni, G. (2010) ‘Multiple sclerosis: a practical overview for clinicians’, British Medical Bulletin, 95(1), pp. 79–104. doi: 10.1093/BMB/LDQ017.
2. Kuhle, J., Disanto, G., Dobson, R., Adiutori, R., Bianchi, L., Giovannoni, G., et al. (2015) ‘Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study’:, http://dx.doi.org/10.1177/1352458514568827, 21(8), pp. 1013–1024. doi: 10.1177/1352458514568827.
3. Fjell, A. and Walhovd, K. (2010) ‘Structural brain changes in aging: courses, causes and cognitive consequences’, Reviews in the neurosciences, 21(3), pp. 187–221. doi: 10.1515/REVNEURO.2010.21.3.187.
4. Cole, J. H., Ritchie, S. J., Bastin, M. E., Valdés Hernández, M. C., Muñoz Maniega, S., Royle, N., Corley, J., Pattie, A., Harris, S. E., Zhang, Q., Wray, N. R., Redmond, P., Marioni, R. E., Starr, J. M., Cox, S. R., Wardlaw, J. M., Sharp, D. J. and Deary, I. J. (2017) ‘Brain age predicts mortality’, Molecular Psychiatry 2018 23:5, 23(5), pp. 1385–1392. doi: 10.1038/mp.2017.62.
5. Høgestøl EA, Kaufmann T, Nygaard GO, Beyer MK, Sowa P, Nordvik JE, et al. Cross-Sectional and Longitudinal MRI Brain Scans Reveal Accelerated Brain Aging in Multiple Sclerosis. Front Neurol. 2019;0(APR):450.
6. Cole, J. H., Raffel, J., Friede, T., Eshaghi, A., Brownlee, W. J., Chard, D., Stefano, N. De, Enzinger, C., Pirpamer, L., Filippi, M., Gasperini, C., Rocca, M. A., Rovira, A., Ruggieri, S., Sastre-Garriga, J., Stromillo, M. L., Uitdehaag, B. M. J., Vrenken, H., Barkhof, F., Nicholas, R. and Ciccarelli, O. (2020) ‘Longitudinal Assessment of Multiple Sclerosis with the Brain-Age Paradigm’, Annals of Neurology, 88(1), pp. 93–105. doi: 10.1002/ANA.25746.
7. Kaufmann, T., van der Meer, D., Doan, N.T. et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci 22, 1617–1623 (2019). https://doi.org/10.1038/s41593-019-0471-7
8. Gong, W., Beckmann, C. F., Vedaldi, A., Smith, S. M. and Peng, H. (2021) ‘Optimising a Simple Fully Convolutional Network for Accurate Brain Age Prediction in the PAC 2019 Challenge’, Frontiers in Psychiatry, 12, p. 627996. doi: 10.3389/FPSYT.2021.627996.
9. Huang, G., Liu, Z., van der Maaten, L. and Weinberger, K. Q. (2016) ‘Densely Connected Convolutional Networks’, Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 2261–2269. Available at: https://arxiv.org/abs/1608.06993v5 (Accessed: 5 September 2021).
10. Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. A. (2017) ‘Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning’, Thirty-First AAAI Conference on Artificial Intelligence. Available at: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806 (Accessed: 18 July 2021).
11. MAGNIMS (Magnetic Resonance Imaging in MS) Group (2021). Available at: https://www.magnims.eu/ (Accessed: 26 August 2021).
12. ADNI, A. D. N. I. (2017) ADNI-3. Available at: http://adni.loni.usc.edu/adni-3/ (Accessed: 26 August 2021).
13. Solomon, A., Kivipelto, M., Molinuevo, J. L., Tom, B. and Ritchie, C. W. (2018) ‘European Prevention of Alzheimer’s Dementia Longitudinal Cohort Study (EPAD LCS): study protocol’, BMJ Open, 8(12), p. e021017. doi: 10.1136/BMJOPEN-2017-021017.
14. Boeve, B., Boxer, A. and Rosen, H. (2021) ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration Study (ALLFTD). Available at: https://memory.ucsf.edu/research-trials/research/allftd (Accessed: 26 August 2021).
15. Valverde, S., Cabezas, M., Roura, E., Gonzálezvilì, S., Pareto, D., Vilanova, J. C., Ramió-Torrentà, L., Rovira, A., Oliver, A. and Lladó, X. (2017) ‘Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach’. Available at: https://portal.fli-iam.irisa.fr/msseg-challenge/workshop- (Accessed: 26 August 2021).
16. Prados, F., Cardoso, M. J., Kanber, B., Ciccarelli, O., Kapoor, R., Gandini Wheeler-Kingshott, C. A. M. and Ourselin, S. (2016) ‘A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis’, NeuroImage, 139, pp. 376–384. doi: 10.1016/J.NEUROIMAGE.2016.06.053.
17. Smilkov, D., Thorat, N., Kim, B., Viégas, F. and Wattenberg, M. (2017) ‘SmoothGrad: removing noise by adding noise’. Available at: https://arxiv.org/abs/1706.03825v1 (Accessed: 31 August 2021).
18. Klein, A. and Tourville, J. (2012) ‘101 labeled brain images and a consistent human cortical labeling protocol’, Frontiers in Neuroscience, (DEC). doi: 10.3389/FNINS.2012.00171.
19. Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A. V., Mahmood, A., Woods, R., Toga, A. W., Pike, G. B., Neto, P. R., Evans, A., Zhang, J., Huang, H., Miller, M. I., van Zijl, P. and Mazziotta, J. (2008) ‘Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template’, NeuroImage, 40(2), pp. 570–582. doi: 10.1016/J.NEUROIMAGE.2007.12.035
20. Collorone, S., Prados, F., Kanber, B., Cawley, N. M., Tur, C., Grussu, F., Solanky, B. S., Yiannakas, M., Davagnanam, I., Wheeler-Kingshott, C. A. M. G., Barkhof, F., Ciccarelli, O. and Toosy, A. T. (2021) ‘Brain microstructural and metabolic alterations detected in vivo at onset of the first demyelinating event’, Brain, 144(5), p. 1409. doi: 10.1093/BRAIN/AWAB043.