Mid-field (0.5T) MRI is an attractive alternative to higher field strengths for improved cost, accessibility and patient comfort. Magnet length is a major determinant of patient comfort/acceptance but is constrained by escalating wire costs. We present a mid-field magnet design using rare-earth permanent magnets to supplement solenoidal superconducting windings, enabling shorter bore lengths than superconducting windings alone. The optimization problem is formulated and solved using linear programming. For a given superconducting wire length, we demonstrate that adding rare-earth materials can reduce bore lengths by 10% using <250kg of rare-earth material for a 5ppm, 0.5T B0 specification over a 450mm DSV.
[1] Marques, J. P., Simonis, F. F. J., & Webb, A. G. (2019). Low-field MRI: An MR physics perspective. In Journal of Magnetic Resonance Imaging (Vol. 49, Issue 6, pp. 1528–1542). John Wiley and Sons Inc. https://doi.org/10.1002/jmri.26637
[2] Wald, L.L., McDaniel, P.C., Witzel, T., Stockmann, J.P. and Cooley, C.Z. (2020), Low-cost and portable MRI. In Journal of Magnetic Resonance Imaging, (Vol. 52: 686-696. https://doi.org/10.1002/jmri.26942
[3] Stainsby, J. A., Bindseil, G. A., Connell, I. R., Thevathasan, G., Curtis, A. T., Beatty, P. J., Harris, C. T., Wiens, C. N., & Panther, A. (2019). Imaging at 0.5 T with high-performance system components System Components. ISMRM 27th Annual Meeting and Exhibition. 1194
[4] Panther, A., Thevathasen, G., Connell, I. R. O., Yao, Y., Wiens, C. N., Curtis, A. T., Bindseil, G. A., Harris, C. T., Beatty, P. J., Stainsby, J. A., Cunningham, C. H., Chronik, B. A., & Piron, C. (2019). A Dedicated Head-Only MRI Scanner for Point-of-Care Imaging Barriers to MRI being used at the point-of-care. ISMRM 27th Annual Meeting and Exhibition. 3679
[5] Harris, C. T., Curtis, A. T., Wiens, C. N., Beatty, P. J., & Stainsby, J. A. (2020). Acoustic Behavior of High Performance Imaging on a Head-only 0.5T Scanner with Asymmetric Gradients. ISMRM & ASRT Virtual Conference and Exhibition. 4207
[6] Connel, I., Panther, A. (2019). Increasing MRI Safety for Patients with Implanted Medical Devices: Comparisons of a 0.5T Head-Only MRI to 1.5T and 3T. 57th Annual ASNR Meeting and Symposium Neuroradiologicum. 3569
[7] Chen, S., Hu, P., Gu, Y., Pang, L., Zhang, Z., Zhang, Y., Meng, X., Cao, T., Liu, X., Fan, Z., & Shi, H. (2019). Impact of patient comfort on diagnostic image quality during PET/MR exam: A quantitative survey study for clinical workflow management. Journal of Applied Clinical Medical Physics, 20(7), 184–192. https://doi.org/10.1002/acm2.12664
[8] Xu, H., Conolly, S. M., Scott, G. C., & Macovski, A. (1999). Fundamental Scaling Relations for Homogeneous Magnets. ISMRM
[9] Aubert, G., Centre National de la Recherche Scientifique CNRS, 1991. Cylindrical permanent magnet with longitudinal induced field. U.S. Patent 5,014,032.
[10] Ortner, M., & Coliado Bandeira, L. G. (2020). Magpylib: A free Python package for magnetic field computation. SoftwareX, 11. https://doi.org/10.1016/j.softx.2020.100466
[11] Xu, H., Conolly, S. M., Scott, G. C., & Macovski, A. (2000). Homogeneous Magnet Design Using Linear Programming. In IEEE TRANSACTIONS ON MAGNETICS (Vol. 36, Issue 2).
[12] Agrawal, A., Verschueren, R., Diamond, S., & Boyd, S. (2017). A Rewriting System for Convex Optimization Problems. http://arxiv.org/abs/1709.04494
[13] Diamond, S., & Boyd, S. (2016). CVXPY: A Python-Embedded Modeling Language for Convex Optimization. http://arxiv.org/abs/1603.00943
Figure 1 (a) Aubert ring configuration of rare earth permanent magnets. (b) Illustrated field profile of configuration in (a). (c) Rare earth magnets aligned parallel with B0 field (reminiscent of ferroshims). Note that unlike ferroshims, rare earth magnets can be oriented to flip magnetization, so that they are aligned anti-parallel with B0. (d) Illustration of the field lines from the magnet configuration in (c).
Figure 2 (a) Table of dimension parameters detailing the magnet designs (b), (c). (b) Rare-Earth magnet design with space for rare earth magnets (orange region) to supplement the superconducting windings (gray region) for short magnet design. (c) Design without rare-earth materials space for comparison. (d) Schematic of optimization for magnet design and optimization objective and constraints, closely following methodology from [8, 11]. (e) Relevant parameters used in optimization for magnet design.
Figure 3 Homogeneity contours from joint design using superconducting windings and Aubert rings. This considers a 1000mm bore length, 0.5T design at 5ppm homogeneity, using 250kg of rare earth material. It requires approximately 2.94 * 106 ampere turns (a) Superconducting homogeneity lines (b) Aubert ring homogeneity lines (c) Total design homogeneity lines. Note that the rare-earth Aubert rings reduce the superconducting only homogeneity, reducing the total current required for the design.
Figure 4 (a) L-curves illustrating the tradeoffs between constrained length max rare-earth mass for Aubert rings only in the rare-earth space (b) tradeoffs between constrained length, and rare-earth configurations. For all designs the field target is 0.5T at 5ppm. Note that for a given current, designs with rare-earth material enable shorter magnet designs (Circled in red: design at a 1.27*106 amp-turn current can be reduced by 12cm with inclusion of rare earth materials)