Coil compression is performed in magnetic resonance imaging (MRI) to enable smaller datasets and faster computation time. However, the traditional coil compression process is lengthy and lossy. In this work, we proposed a novel neural network-based coil compression method to achieve higher reconstruction accuracy and faster coil compression. Our method consistently achieved up to 1.5x lower NRMSE compared to SVD and GCC on the fastMRI knee dataset. The computational requirements of our method are practical, and inference runs 10 times faster than the traditional methods.
Our group receives grant support from NIH R01EB009690, NIH U01EB029427, and GE Healthcare.
1. Roemer P, Edelstein W, Hayes C, Souza S, Mueller O. The NMR phased array. Magn Reson Med 1990; 16: 192–225.
2. Pruessmann K, Weiger M, Scheidegger M, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952–962.
3. Sodickson D, Manning W. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591–603.
4. Griswold M, Jakob P, Heidemann R, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202–1210.
5. Buehrer, M., Pruessmann, K.P., Boesiger, P. and Kozerke, S. (2007), Array compression for MRI with large coil arrays. Magn. Reson. Med. 57: 1131-1139. https://doi.org/10.1002/mrm.21237.
6. Zhang, T., Pauly, J.M., Vasanawala, S.S. and Lustig, M. (2013), Coil compression for accelerated
imaging with Cartesian sampling. Magn Reson Med, 69: 571-582. https://doi.org/10.1002/mrm.24267
7. Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., & Knoll, F. (2018). Learning a variational network for reconstruction of accelerated MRI data. Magnetic resonance in medicine, 79(6), 3055-3071.
8. Mardani, M., Gong, E., Cheng, J. Y., Vasanawala, S., Zaharchuk, G., Alley, M., ... & Xing, L. (2017). Deep generative adversarial networks for compressed sensing automates MRI. arXiv preprint arXiv:1706.00051.
9. Yang, G., Yu, S., Dong, H., Slabaugh, G., Dragotti, P. L., Ye, X., ... & Firmin, D. (2017). DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE transactions on medical imaging, 37(6), 1310-1321.
10. Chen, F., Taviani, V., Malkiel, I., Cheng, J. Y., Tamir, J. I., Shaikh, J., ... & Vasanawala, S. S. (2018). Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks. Radiology, 289(2), 366-373.
11. Quan, T. M., Nguyen-Duc, T., & Jeong, W. K. (2018). Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE transactions on medical imaging, 37(6), 1488-1497.
12. Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102-127.
13. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep learning for brain MRI segmentation: state of the art and future directions. Journal of digital imaging, 30(4), 449-459.
14. Mardani, M., Gong, E., Cheng, J. Y., Vasanawala, S., Zaharchuk, G., Alley, M., ... & Xing, L. (2017). Deep generative adversarial networks for compressed sensing automates MRI. arXiv preprint arXiv:1706.00051.
15. Dumas, T., Roumy, A., & Guillemot, C. (2018). Autoencoder based image compression: can the learning be quantization independent?. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1188-1192). IEEE.
16. Akyazi, P., & Ebrahimi, T. (2019). Learning-based image compression using convolutional autoencoder and wavelet decomposition. In IEEE Conference on Computer Vision and Pattern Recognition Workshops.
17. Goyal, M., Tatwawadi, K., Chandak, S., & Ochoa, I. (2018). Deepzip: Lossless data compression using recurrent neural networks. arXiv preprint arXiv:1811.08162.
18. Cui, W., Yu, Z., Liu, Z., Wang, G., & Liu, X. (2020, September). Compressing Genomic Sequences by Using Deep Learning. In International Conference on Artificial Neural Networks (pp. 92-104). Springer, Cham.
19. Zbonta, J., et al (2018), fastMRI: An Open Dataset and Benchmarks for Accelerated MRI, arXiv,
1811.08839
20. M. Uecker et al., "BART Toolbox for Computational Magnetic Resonance Imaging", Zenodo,
DOI: 10.5281/zenodo.592960