Adequate placental structure and function are crucial for fetal and maternal health. Here we assessed late-gestation placental perfusion (N=50, GA=31-38 weeks) using pseudocontinuous arterial-spin-labeling and radiomics feature-extraction, and their association with umbilical-cord insertion-site and the risk of fetal-growth-restriction (FGR). Increased blood-flow and arterial-transit-time were detected in our normal cases compared to earlier gestation as reported previously. Perfusion features differences were detected in placentas with marginal compared to central cord-insertion, indicating higher intensity heterogeneity. No differences were found between normal and FGR placentas. This study provides normal late-gestation placental perfusion values based on a large cohort, and implies on structural-functional associations.
1. Leitner, Y., Fattal-Valevski, A., Geva, R., Eshel, R., Toledano-Alhadef, H., Rotstein, M., Bassan, H., Radianu, B., Bitchonsky, O., Jaffa, A.J., et al. (2007). Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-year prospective study. J Child Neurol 22, 580-587.
2. Brouillet, S., Dufour, A., Prot, F., Feige, J.J., Equy, V., Alfaidy, N., Gillois, P., and Hoffmann, P. (2014). Influence of the umbilical cord insertion site on the optimal individual birth weight achievement. BioMed research international 2014, 341251.
3. Krishna, U., and Bhalerao, S. (2011). Placental insufficiency and fetal growth restriction. Journal of obstetrics and gynaecology of India 61, 505-511.
4. Pardi, G., Marconi, A.M., and Cetin, I. (2002). Placental-fetal interrelationship in IUGR fetuses--a review. Placenta 23 Suppl A, S136-141.
5. Lutz, A.B., Young-Lin, N., Leon-Martinez, D., Bianco, I.C., Seckel, E., Mrazek-Pugh, B., and Bianco, K. (2021). Measurement of Marginal Placental Cord Insertion by Prenatal Ultrasound Was Found Not to Be Predictive of Adverse Perinatal Outcomes. J Ultrasound Med 40, 2079-2086.
6. Harteveld, A.A., Hutter, J., Franklin, S.L., Jackson, L.H., Rutherford, M., Hajnal, J.V., van Osch, M.J.P., Bos, C., and De Vita, E. (2020). Systematic evaluation of velocity-selective arterial spin labeling settings for placental perfusion measurement. Magn Reson Med 84, 1828-1843.
7. Zun, Z., Zaharchuk, G., Andescavage, N.N., Donofrio, M.T., and Limperopoulos, C. (2017). Non-Invasive Placental Perfusion Imaging in Pregnancies Complicated by Fetal Heart Disease Using Velocity-Selective Arterial Spin Labeled MRI. Scientific reports 7, 16126.
8. Shao, X., Liu, D., Martin, T., Chanlaw, T., Devaskar, S.U., Janzen, C., Murphy, A.M., Margolis, D., Sung, K., and Wang, D.J.J. (2018). Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T. Journal of magnetic resonance imaging : JMRI 47, 1667-1676.
9. Daphna Link, N.A., Xingfeng Shao, Liat Ben-Sira, Leo Joskowicz, Ilan Gull, Danny J.J Wang, and Dafna Ben-Bashat. (2021). Multi-parametric functional and structural assessment of the placenta at late gestational ages using MRI Proc Int Soc Magn Reson Med (2021).
10. Link, D., Many, A., Ben Sira, L., Tarrasch, R., Bak, S., Kidron, D., Gordon, Z., Yagel, S., Harel, S., and Ben Bashat, D. (2020). Placental vascular tree characterization based on ex-vivo MRI with a potential application for placental insufficiency assessment. Placenta 101, 252-260.
11. van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R.G.H., Fillion-Robin, J.C., Pieper, S., and Aerts, H. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer research 77, e104-e107.
12. Konje, J.C., Kaufmann, P., Bell, S.C., and Taylor, D.J. (2001). A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies. Am J Obstet Gynecol 185, 608-613.