To identify the optimal model-based deconvolution process for DSC-MRI, four models of transit time distribution (TTD) were compared in terms of goodness and stability of fit, consistency of perfusion estimates, computational complexity, and robustness against noise. Although all models gave similar fits, the gamma function converged faster and more consistently to the global minimum, regardless of the initial guess. Moreover, it gave more accurate and precise perfusion estimates in the presence of noise. We conclude that the gamma function is the most suitable TTD model for perfusion analysis, and may prove useful in urgent clinical situations and multi-centre studies.
1. Essig M, Shiroishi MS, Nguyen TB, et al. Perfusion MRI: the five most frequently asked technical questions. AJR American journal of roentgenology. 2013;200(1):24-34.
2. Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR American journal of neuroradiology. 2003;24(10):1989-1998.
3. Zivadinov R, Bergsland N, Stosic M, et al. Use of perfusion- and diffusion-weighted imaging in differential diagnosis of acute and chronic ischemic stroke and multiple sclerosis. Neurol Res. 2008;30(8):816-826.
4. Mattia D, Babiloni F, Romigi A, et al. Quantitative EEG and dynamic susceptibility contrast MRI in Alzheimer's disease: a correlative study. Clin Neurophysiol. 2003;114(7):1210-1216.
5. Jahng GH, Li KL, Ostergaard L, Calamante F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean journal of radiology. 2014;15(5):554-577.
6. Koh TS, Zeman V, Darko J, et al. The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow. Physics in medicine and biology. 2001;46(5):1519-1538.
7. Mouridsen K, Friston K, Hjort N, Gyldensted L, Ostergaard L, Kiebel S. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. NeuroImage. 2006;33(2):570-579.
8. Larsson HBW, Vestergaard MB, Lindberg U, Iversen HK, Cramer SP. Brain capillary transit time heterogeneity in healthy volunteers measured by dynamic contrast-enhanced T(1) -weighted perfusion MRI. J Magn Reson Imaging. 2017;45(6):1809-1820.
9. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magnetic resonance in medicine. 2006;55(3):524-531.
10. Peruzzo D, Bertoldo A, Zanderigo F, Cobelli C. Automatic selection of arterial input function on dynamic contrast-enhanced MR images. Computer methods and programs in biomedicine. 2011;104(3):e148-157.
11. Yin J, Yang J, Guo Q. Evaluating the feasibility of an agglomerative hierarchy clustering algorithm for the automatic detection of the arterial input function using DSC-MRI. PloS one. 2014;9(6):e100308.
12. Perl W, Lassen NA, Effros RM. Matrix proof of flow, volume and mean transit time theorems for regional and compartmental systems. Bulletin of mathematical biology. 1975;37(6):573-588.
13. Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR in biomedicine. 2013;26(8):1004-1027.
14. Bjornerud A, Emblem KE. A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30(5):1066-1078.
15. Larsson HB, Hansen AE, Berg HK, Rostrup E, Haraldseth O. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging. 2008;27(4):754-762.
16. Ostergaard L, Smith DF, Vestergaard-Poulsen P, et al. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1998;18(4):425-432.
17. Hakyemez B, Erdogan C, Ercan I, Ergin N, Uysal S, Atahan S. High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol. 2005;60(4):493-502.
18. Ibaraki M, Ito H, Shimosegawa E, et al. Cerebral vascular mean transit time in healthy humans: A comparative study with PET and dynamic susceptibility contrast-enhanced MRI. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2007;27:404-413.
19. Chou YC, Teng MM, Guo WY, Hsieh JC, Wu YT. Classification of hemodynamics from dynamic-susceptibility-contrast magnetic resonance (DSC-MR) brain images using noiseless independent factor analysis. Med Image Anal. 2007;11(3):242-253.
20. Helenius J, Perkiö J, Soinne L, et al. Cerebral hemodynamics in a healthy population measured by dynamic susceptibility contrast MR imaging. Acta Radiol. 2003;44(5):538-546.
21. Zhu XP, Li KL, Jackson A. Dynamic Contrast-Enhanced MRI in Cerebral Tumours. In: Jackson A, Buckley DL, Parker GJM, eds. Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005:117-143.
22. Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magnetic resonance in medicine. 2009;62(1):205-217.
23. Rausch M, Scheffler K, Rudin M, Radü EW. Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magnetic Resonance Imaging. 2000;18(10):1235-1243.
Figure 3: Relative dispersion in perfusion estimates for all four models of transit time distribution (TTD) as a function of signal-to-noise ratio (SNR). All models show similar trends in dispersion: the spread of the parameter estimates decreases with increasing SNR. The gamma and gamma-variate functions tend to perform better for noisy grey matter (GM) signals. Abbreviations: CBF, cerebral blood flow; CBV, cerebral blood volume; MTT, mean transit time.
Table 1: Mean (Standard deviation) of root-mean-square error (RMSE), success rate (percentage of successful fits), and computation time (Tcomp) obtained with each transit time distribution (TTD) for grey matter (GM) and white matter (WM)
Table 2: Mean (Standard deviation) of parameter estimates obtained with each transit time distribution (TTD), h